Efficient Construction of Catastrophic Patterns for VLSI
Reconfigurable Arrays with Bidirectional Links

Amiya Nayakt, Linda Paglii, Nicola Santoro!

t Center for Parallel & Distributed Computing, School of Computer Science
Carleton University
Ottawa, K18 5B6, Canada

1 Dipartimento di Scienze dell’Inform azione
University of Pisa
Corso Italia 40, 56100 Pisa, Italy.

Abstract

Patterns of faults that are catastrophic for regular ar-
chitectures, particularly the systolic arrays, have been
studied. For a given link configuration, there are many
fault patterns which are catastrophic. Among those,
there is a particular fault pattern, called the reference
fault pattern, which is crucial for the development of
testing techniques; furthermore, the efficiency of any
testing algorithm can be further improved in the pres-
ence of efficient algorithms for constructing the refer-
ence fault pattern.

In this paper, we develop a new algorithm for the
construction of the reference fault pattern for VLSI re-
configurable arrays in which the links are bidirectional.
The complexity of the new algorithm is O(kN) which
is a significant improvement over the existing O(N?)
algorithm, where k is the number of bypass links, and
N is the length of the largest bypass link.

1 Introduction

Fault tolerance by means of component redundancy
and mechanisms for reconfiguration is common in
VLSI-based regular architectures. The redundant pro-
cessing elements (PEs) are used to replace any faulty
PE(s); the redundant links are used to bypass the
faulty PEs and reach the redundant PEs used as a
replacement. In the literature, many algorithms [2-
4,9-11] have been proposed which take into account
the built-in redundancy and reconfigure the system in
the presence of faulty PEs and faulty links. The re-
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configuration approaches work quite well and achieve
good yield, but are prone to failures when confronted
with specific patterns of faults in the system. In fact,
faults occuring at strategic locations may have catas-
trophic effect on the entire structure and cannot be
overcome by any clever reconfiguration process.

In a linear array of PEs, with no link redundancy,
a single PE fault in any location is sufficient to block
the flow of information from input to output. Simi-
larly, it is easy to see that the same array with k—1
bypass links {g2,¢3,...,gs} cannot tolerate gx (not k,
the total number of links) PE faults if they occur in
a block (or cluster). The probability of block faults
of size gi or higher is relatively small; however, there
exist many patterns of gi faults, not in a block, for
which any reconfiguration algorithm will fail, and the
structure will still be unusable.

The fault patterns that are catastrophic have been
studied for systolic arrays [6-8]. The knowledge about
the catastrophic fault patterns can be used in many
ways to improve reliability of regular systems. The
knowledge about the catastrophic fault patterns can
be applied to test for the likelihood of a catastrophe in
regular systems. It is also possible to evaluate a design,
using the characterization of catastrophic. fault pat-
terns, to verify if specific patterns of faults are catas-
trophic; should this be the case, any future design can
be upgraded by incorporating appropriate redundancy
structure into the design to minimize catastrophe.

For a given link configuration, there are many fault
patterns which are catastrophic. Among those, there
is a particular fault pattern, called the reference fault



pattern, which has special properties. These properties
have been used in [5] in 1) the identification of nec-
essary and sufficient conditions for an arbitrary fault
pattern to be catastrophic and 2) the development of
efficient testing technique. The reference fault pat-
tern is an essential part of the testing algorithm. The
efficiency of any testing algorithm can be further im-
proved in the presence of efficient algorithms for con-
structing reference fault pattern.

Algorithm for constructing the reference fault pat-
tern in the case of bidirectional links is given in [8].
The algorithm has complexity O(N?), where N = g;
is the length of the largest bypass link. In this paper,
we develop an improved algorithm for the construc-
tion of reference fault pattern. The new algorithm has
time complexity O(kN) where k is the number of by-
pass links in the VLSI reconfigurable array.

The organization of the paper is as follows. Basic
concepts and terminologies are introduced in Section
2. The improved algorithm is described in Section 3
followed by a conclusion in Section 4.

2 Preliminaries

Let A = {po, p2,-..,pN} denote a one-dimensional ar-
ray of PEs, where each p € A represents a processing
element and there exists a direct link (regular link)
between p; and p;41,0 < ¢ < N. Any link connect-
ing p; and p; where j > i+ 1 is said to be a bypass
link. The length of a bypass link, connecting p; and
Pj, is the distance in the array between p; and p;; i.e.,
|7 — i|. Regular links exist between neighbouring PEs
while the bypass links are assumed to exist between
non-neighbours. The bypass links are used strictly for
reconfiguration purposes when a fault is detected. For
all other purpose, the bypass links are considered to
be the redundant links. The links can be either uni-
directional or bidirectional, but the focus will be only
on bidirectional links in this paper.

Given an integer ¢ € [1, N] and an array A of size
N, A is said to have link redundancy g, if for every
pi € A with i < N — g there exists a link between
pi and piyg; if ¢ > 1, such a link will be called a
bypass link. Let G = {g1,92,...,9:}, where g; < gj41
and g; € [1,N], be the set of all links for A. The
array A is said to have link redundancy G if A has
link redundancy g1,92,...,9k. In the following, it will
be assumed that no other links exist in the array except
the ones specified by G. Thus, G totally defines the
link structure of A, and A will be called a k—redundant
system.
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Given a linear array A of size N, a faull pattern
for A is a set of integers F = {fo, f1,.-.,fm} where
m < N, fj < fj+1 and f; € [0, N]. An assignment of a
fault pattern F to A means that for every f € F, py
is faulty.

Definition 1 A fault patiern F is catastrophic for an
array A with link redundancy G if the array cannot be

reconfigured in the presence of such an assignment of
faults.

In other words, F is a cut-set of the graph corre-
sponding to A; that is, the removal of the faulty ele-
ments and their incident links will cause the array to
become disconnected.

Definition 2 The width Wr of a faull pattern F is
the number of PEs between and including the first and
the last fault in F. That is, if F = {fo,..., fm} then
Wp = fm - fO + 1.

A characterization of catastrophic fault patterns was
given in [8]. It was shown that a catastrophic fault pat-
tern for a link configuration G = {¢1,92,..., 9%} must
have at least g; number of faults. Also, the width of
a fault pattern must be bounded for the pattern to be
catastrophic. Bounds were established on the width of
the fault window Wy for different link configurations.
In this paper, we will consider minimal catastrophic
fault patterns; that is, a fault pattern which has ex-
actly gi faulty PEs.

Let F = {fo, f1,..., fox~1} an arbitrary fault pat-
tern, consisting of g faults for an arbitrary link config-
uration G = {g1,932,...,9¢}. Without loss of general-
ity, assume that fo = 0. We represent F' by a Boolean
matrix W of size (WZ x gi), where W& = [Wr/gi],
defined as follows:

1 if(ige+Jj)€F
0 otherwise

Wil = {

In the matrix representation, each f; € F is mapped
into W{zy, ] where z; = | fi/gx] and yi = fi mod gp.
Notice that W[0,0] = 1 which indicates the location of
the first fault.

Example 1: Consider a fault pattern F; with 8 faults
for an array of PEs with bidirectional links with link
configuration G = {1,4,8} which has Wp = 19 as
shown in Figure 1. The Boolean matrix representation
of F is shown Figure 2.



f20 fa fa fs fe

fo fi
6000600
Figure 1 : A fault pattern Fy for G = {1,4,8}

h

0 0 1 0 0 0 0 0
fr

Figure 2 : The matrix representation for Fy

Notice that any minimal catastrophic fault pattern
satisfies the necessary condition that Vj, there is only
one i for which Wli, jj= 1.

Let W be the matrix representation of a minimal
fault pattern F. The row coordinates of F is the or-
dered set {zo,21,-..,Z4,-1} of the row indices of W
corresponding to the faults f; (0 < i< gx — 1).

Let W[z, y1] be the location of fault f;. The location
Wi, y], with respect to fi, is interior if i < z, border
if i = z;, and exterior if i > z;. Similarly, for a given
fault pattern F, I(F) (i.e., interior of F) is the set of
all interior elements, B(F) (i.e., border of F) is the set
of all border elements, and E(F) (ie., exterior of F)
is the set of all exterior elements.

Now with respect to the matrix representation of F,
a fault pattern F is said to be catastrophic for an array
A with link redundancy G if it is not possible to reach
any exterior element from any interior element using
the links in G.

Definition 3 The area Ar of a fault pattern F is the
number of interior and border elements; that is,

-1

Ar = [I(F)UB(F)l = X (55— 1).
i=0

For a given link configuration, there are many fault
patterns which are catastrophic. Among those, there
is a particular fault pattern, called the reference fault
pattern.

0060606000080
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Definition 4 Given a link configuration G, a
reference fault pattern (RFP) is a catastrophic fault
patiern for G which has largest width Wr and maz-
imum area.

3 Construction of Reference
Fault Pattern

The algorithm for the construction of the reference
fault pattern has been given in [8] for bidirectional
links. The algorithm has complexity O(Wr + kgi).
Since W can be as large as O(g}) in the worst case,
the complexity of the algorithm can be O(g3). In
the following, we present improved algorithm for con-
structing the reference fault pattern F in the case of
bidirectional links.

The new algorithm practically constructs the refer-
ence fault pattern by determining the position of the
border elements in the corresponding matrix represen-
tation. This is achieved without actually construct-
ing the Boolean matrix unlike the case in the existing
algorithm; note that to construct the matrix, O(g?)
operations would be required.

The placement of a fault in a specific position in the
array may “force” the placement of other faults. The
forced placement of other faults by a fault f will be
called the bidirectional effect of the fault f.

Definition 5 Let f € F and let W[i,j] be the
corresponding eniry in the Boolean representation
of F. The (bidirectional) effect of f is the set

W ={f+mtg: g€GL

Theorem 1 F is caiastrophic for G if and only if
¥(f) C E(F)U B(F) for every f € F.

Proof: (if part) By contradiction, let f € F be such
that $(f)NI(F) # 0. Let W[i, j] be the border element
in W corresponding to f. Also let z = f+gx—g be an
arbitrary element in y(f)NI(F) for some g € G. Then
z+g=(f+9r—9)+9=1F+g;the corresponding
element is W[i + 1, j] which is exterior since W{i, j] is
the border element corresponding to f. Hence, it is
possible to reach the exterior element z + g from the
interior element z € ¥(f)NI(F), contradicting the fact
that F is catastrophic.

(only if part) Let ¥(f) € E(F)U B(F) for every
f € F. To prove that F is catastrophic, it suffices to
show that Vg € G and Vz € I(F), z+¢ € I(F)UB(F).
Consider an arbitrary column in i in W, let z; be the
row index such that W{z;,i] =1 and let f € F be the



corresponding fault mapped into Wiz;,i]. Given an
arbitrary link g € G, f+9e—9g € ¥(f) C E(F)UB(F).
Now consider the following two cases:

e Case 1 (g 2 i): In this case, f + gi — g corre-
sponds to element Wz, i+ gk — g] which is either
exterior or border since (f) C E(F)U B(F). In
other words, Zi4g,—g < Zi; this implies that every
interior element in column i+ gi — g reaches only
an interior element in column i using link g.

o Case 2 (g < i): In this case, f+gr—9 corresponds
to element W(z; + 1, + g1 — g] which is either
exterior or border since ¥(f) C E(F)U B(F). In
other words, Titg-g < Ti+ 15 this implies that
every interior element in column i+gi —¢ reaches
only an interior or border element in column i
using link g.

Since g is arbitrary, every interior element in every col-
umn which can reach column i must reach either an
interior or a border element in column i. Since i is
arbitrary, it follows that the exterior of F' is not reach-
able from the interior of F; thus, F is catastrophic.
[w]

The algorithm generates the faults f; sequentially.
Starting with fo = 0 (ie, W[0,0] = 1), it determines
the location of the elements of ¥(f:) in W. Because of
Theorem 1, any such element must be either exterior
or border; the algorithm checks any such location: if
it is already an exterior element (i.e., the border el-
ement for that column has already been found), it is
ignored; if it is not exterior, it must become a border
element, and the corresponding new fault is added to
the pattern. To determine whether or not a location
corresponding to an element in 1( fi) is exterior, the
algorithm uses a Boolean array V of size gi: V[j]=1
indicates that the border element for column j has al-
ready been determined. Whenever a new border (ie.,
new fault) is found, the corresponding entry in V is set
to 1.

For the algorithm to operate correctly, the faults f;’s
must be considered sequentially. To ensure sequential
processing of the faults, a heap structure is employed.
A heap [1] is an implicit data structure (i.e., imple-
mentable without pointers in an array) which supports
the following operation: Inserl(z) and Eztract-Min.
The Eztract-Min operation will return the smallest el-
ement stored in the structure. Both operations can
be performed in time O(log N) where N is the num-
ber of elements in the heap. The elements we insert
are couples (i, j) denoting the indices of the entries in
W corresponding to the faults in F so far determined.
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The total ordering enforced on the couples is a lexico-
graphic one: that is, (i,7) < (#,#') if and only if either
i<iori=i&ji<ijy.

The Algorithm:

Begin
Let V[i]:=0 for 1<i< g —1;
Let V[0] :=1;1:=0; fi=0;
Insert(HEAP,[0,0]);
while NonEmpiy(HEAP) do
[i,7) = Extract-MIN(HEAP);
forr:=k—1downto1 do
if j > gr then
=i+ ]
Jji=1J-9r
else
=1

)
J+ gk —9r

<. e

endif

Test-and-Insert;

=i+

J=3+9r

if j > gi then
=i+

endif
Test-and-Insert;
enddo
End.

Procedure Test-and-Insert;
Begin
if V[j) =0 then
l=141
fi=ig+i+];
Vvil=1
Insert(HEAP,[3, 7));
endif
End;

Let F, denote the fault pattern constructed by the
improved algorithm for bidirectional links.

Example 2: F} = {0,5,9,11,14,16,18,22,23,27} is
the reference fault pattern with 10 faults, obtained by
the algorithm, for an array of PEs with bidirectional
links with link configuration G = {1,5,10}.

Property 1 ¥, is catasirophic for bidirectional links.
Proof: By construction, for every f € Fy, ¥(f) €

E(Fi) U B(F:). Hence, by Theorem 1, Fp is catas-
trophic. O



Property 2 F, has mazimum width and mazimum
area.

Since F; has the largest width and area, it follows
(by Definition 4) that F3 is the reference fault pattern.

Property 3 The improved algorithm generates F for
bidirectional links in time O(kg:).

Proof: For each fault f;, the algorithm considers
¥(fi); this requires O(k) operations. FEach f; is in-
serted in the heap exactly once (since, once it is en-
tered, the corresponding entry V] is set to 1) and is
extracted from the heap exactly once. At any time,
there are at most k elements in the heap; since insert
and extract-min operations in a heap of k elements
require O(log k) time, the total complexity of heap op-
erations is O(klogk). When f; is extracted from the
heap, the locations corresponding to ¥(fi) are con-
sidered, and for each such location, only a constant
number of operations is performed for: 1) determining
the corresponding 1,7, 2) checking if V[5] = 0. Since
{l¥(f:)]] = k and ||F3]| = g, the total number of these
operations is O(kgx). In summary, the complexity of
the algorithm is O(klog k + kgi); since log k < gi, the
total complexity of the algorithm is therefore O(kgi).
a

4 Conclusions

In this paper, we have presented an alternate algo-
rithm for the construction of the reference fault pattern
for VLSI reconfigurable arrays in which the links are
bidirectional. The complexity of the new algorithm is
O(kgi) which is significantly better than O(Wr +kgz),
the complexity of the existing algorithm since the win-
dow size W of a fault pattern can be as large as g2
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