
Distributed Black Virus Decontamination and Rooted Acyclic Orientations

Jie Cai

School of Computer Science

Carleton University

Ottawa, ON, Canada K1S 5B6

Email: jie.cai@carleton.ca

Paola Flocchini

School of EECS

University of Ottawa

Ottawa, ON, Canada, K1N 6N5

Email: paola.flocchini@uottawa.ca

Nicola Santoro

School of Computer Science

Carleton University

Ottawa, ON, Canada K1S 5B6

Email: santoro@scs.carleton.ca

Abstract—In a network supporting mobile agents, a particular
threat is that posed by the presence of a black virus (BV), a
harmful entity capable of destroying any agent arriving at the site
where it resides, and of then moving to all the neighbouring sites.
A moving BV can only be destroyed if it arrives at a site where an
anti-viral agent is located. The objective for a team of mobile anti-
viral system agents, called cleaners, is to locate and permanently
eliminate the BV, whose initial location is unknown. The goal
is to perform this task with the minimum number of network
infections and agent casualties. The problem of optimal black

virus decontamination (BVD) has been investigated for special
classes of highly regular network topologies; a (centralized)
solution exists for networks of known arbitrary topology.

In this paper, we consider the BVD problem in networks
of arbitrary and unknown topology; we prove that it can be
solved optimally in a purely decentralized way by asynchronous
agents provided with 2-hop visibility. In fact, we prove that our
proposed protocols always correctly decontaminate the network
with the minimum number of system agents’ casualties and
network infections. Furthermore, we show that the total number
of system agents is also optimal.

Finally, we prove an interesting correspondence between the
BVD problem and the problem of computing a rooted acyclic
orientation of a given graph with minimum outdegrees. As a
consequence, our protocols provide a distributed optimal solution
to this graph optimization problem.

Index Terms—Black Virus, Graph Exploration and Decontam-
ination, Mobile Agent.

I. INTRODUCTION

In networked systems supporting mobile agents, a malicious

agent can cause computer nodes to malfunction by contami-

nating or infecting them; additionally, a malicious host can

harm incoming agents for various purposes (e.g., see [16]).

The theoretical focus has been on a particularly harmful

host, called black hole: a network node infected by a process

which destroys any incoming agent without leaving any de-

tectable trace of the destruction. The primary concern has been

on locating its position, for isolation and later disarming; this

problem, called black hole search (BHS), has been extensively

studied (e.g., [6], [7], [8], [11], [12], [10], [19], [23]). In

regards to harmful agents, the theoretical work has focused on

the problem called intruder capture (IC) (also known as graph

decontamination and connected graph search): an extraneous

mobile agent, the intruder, moves through the network infect-

ing the visited sites; the task is to decontaminate the network

using a team of system agents avoiding recontamination. Also

this problem has been extensively studied (e.g.,[2], [3], [13],

[14], [15], [18], [21], [22], [25], [26], [24], [27]).

Let us point out that a black hole is a presence which

is harmful to agents but it is stationary, that is, it does not

propagate in the network and so it is not harmful to other

sites; on the other side, the intruder is mobile and harmful

to the network sites, but does not cause any harm to system

agents.

Recently some investigations have started to focus on an

harmful entitiy, called black virus (BV), that combines some

of the destructive power of black holes with some of the

mobility of intruder [4]. Like a black hole, a BV destroys

any agent arriving at the network site where it resides. When

this occurs, unlike a black hole which is stationary, the BV

moves spreading clones to all neighbouring sites; A black virus

(clone) is destroyed only if it moves to a node where an anti-

viral system agent is present; in this case, the agent is able to

deactivate and permanently remove that (instance of the) BV.

The task of permanently removing any presence of the BV

from the network using a team of system agents, called black

virus decontamination (BVD), is dangerous for the system

agents performing it, since any agent arriving at a node where

an instance of the BV resides will be destroyed; it is obviously

dangerous for all the nodes where the BV will spread to. The

search is for solution protocols, that is algorithmic strategies

that would enable the team of system agents, once injected in

the system at a network site, to move in the network so that

within finite time any presence of the BV is removed from

the network. The goal of a solution protocol is to minimize

the spread of the BV i.e., the number of node infections by

the BV’s; note that, since each instance of the BV has to be

eventually removed and each removal requires the destruction

of at least one agent, the spread also measures the number

of agent casualties. The other important cost measure is the

size of the team, i.e. the number of agents employed by the

solution.

The clones of a BV have the same harmful capabilities of

the original BV; two versions of the BVD problem have been

examined, depending on whether or not are sterile, that is,

unable to produce clones. In this paper we consider the model

of sterile clones.

This problem has been studied in networks with special

topologies, namely grids, tori, and hypercubes [4], for which

optimal solutions have been designed. In the case of networks

arbitrary topology, the problem has been investigated and

solved assuming full topological knowledge of the graph [5];

in other words, the solution is centralized.

In this paper, we consider asynchronous networks of arbi-

trary unknown topology and we show that the BVD problem

can be solved optimally in a purely decentralized way by

asynchronous agents provided with 2-hop visibility. In fact, we

prove that our proposed protocols always correctly decontami-

nate the network with the minimum number of system agents’

casualties and network infections. Furthermore, we show that

the total number of system agents is also optimal.

Finally, we show an interesting correspondence between the

BVD problem and a special instance of the graph optimiza-

tion problem of determining an orientation with minimum

maximum outdegree (e.g., [1], [28]). In fact, we prove that

any optimal solution to the BVD problem can be used to

compute a rooted acyclic orientation with minimum outdegree;

as a consequence, our protocols provide a distributed optimal

solution to this graph optimization problem.

II. MODEL

The environment is a network supporting mobile agents;

its topology is modelled as a simple undirected connected

graph G = (V,E) with n = |V | nodes (or sites) and

m = |E| edges (or links). We denote by E(v) ⊆ E the

set of edges incident on v ∈ V, by N(v) ⊂ V the set of

its neighbours, by d(v) = |E(v)| its degree, and by △(G)
(or simply △) the maximum degree in G. Every node v has a

distinct identity id(v). The links incident to a node are labelled

with distinct port numbers. The labelling mechanism could

be totally arbitrary among different nodes; without loss of

generality, we assume the link labels for node v form the set

lv = {1, 2, 3, ..., d(v)}.

A team A = {A1, . . . , Ak} of mobile system agents,

called cleaners, provided with decontamination capabilities,

is injected in the network at a node h called the home base.

Each agent A ∈ A is a computational entity with its own

local memory and a unique identifier id(A) from some totally

ordered set; it can move from node to neighbouring node. The

agents can have different roles (i.e., states), but they all operate

according to the same protocol. More than one agent can be

at the same node at the same time. Communication among the

agents is face-to-face: two (or more) agents can communicate

only when at the same node; there are no a priori restrictions

on the amount of exchanged information. The agents have

no a priori knowledge of the network G nor of its size. The

agents are provided with limited visibility: when at a node v

an agent see the 2-neighbourhood N2(v) of v, including the

node identities and the edge labels.

In the network there is a node infected by a black virus

(BV), a process endowed with reactive capabilities for destruc-

tion and spreading. It is harmful not only to the node where

it resides but also to any agent arriving at that node. More

precisely, a BV destroys any agent arriving at the network site

where it resides.

A BV can be deactivated only by a cleaner; even then,

it can harm the neighbouring networks sites. More precisely,

when deactivated the BV can release clones that spread to all

the neighbouring nodes. The clones of a BV have the same

harmful capabilities of the original BV but are sterile, that is,

unable to produce clones.

If a BV clone arrives at a node with no cleaner, it infects

the node and becomes resident there; if the node is occupied

by a cleaner, the BV clone is destroyed before it can cause

any harm. We assume that multiple copies of the BV clones

at the same node are merged into one; i.e., at any time at each

node there is at most one BV clone.

With respect to time and synchronization, there are no

global clocks, and the duration of any activity (e.g., processing,

communication, moving) by the agents, the BV, and its clones

is finite but unpredictable; in other words, the system is asyn-

chronous and any needed synchronization must be achieved

by the agents’ protocol.

The BLACK VIRUS DECONTAMINATION (BVD) problem is

to permanently remove the BV and its clones from the network

using the team of cleaners.

A protocol defining the actions of the cleaners solves BVD

in G if, within finite time, at least one cleaner survives and the

network is free of BVs, regardless of the location of the home

base and of the black virus, and regardless of the duration

of the actions of the agents, of the BV, and of its clones. A

protocol solves BVD if it solves it in every network G. Let P
denote the set of all solution protocols of the BVD problem.

A solution protocol is monotone if no recontamination occurs

in any of its execution; that is, once a node is visited by a

cleaner, it will not be (re)contaminated by a BV clone.

The goal of a solution protocol P ∈ P is to decontaminate

the network minimizing the spread of the black virus, i.e.,

the number of node infected by the BV and its clones. Note

that, since each instance of the BV (original or clone) has to

be eventually removed and since each removal requires the

destruction of at least one cleaner, the spread also measures

the number of cleaner casualties.

Given a solution protocol P and a network G = (V,E),
let spread(P,G) denote the maximum number of casualties

incurred when executing P in G in the worst case (i.e., over

all possible initial locations of the BV and of the home base,

and all possible execution delays); then

spread(G) = MinP∈P{spread(P,G)}

denotes the minimum amount of casualties possible to de-

contaminate G in the worst case. A solution protocol P is

worst-case optimal if spread(P,G) = spread(G) for all G.

A finer cost measure is the maximum number of casualties

spread(P,G, v) incurred over all possible executions and

locations of BV starting from homebase v ∈ V ; thus

spread(G, v) = MinP∈P{spread(P,G, v)}

denotes the minimum amount of casualties possible to de-

contaminate G when starting from v. A solution protocol P

is everywhere optimal if for all G = (V,E) ∈ G, and all

v ∈ V , spread(P,G, v) = spread(G, v); clearly everywhere

optimality implies worst-case optimality.

For a (worst-case or everywhere) optimal protocol P , an

important cost measure is the size of the team of cleaners

size(P,G); we denote by size(G) = Min{size(P,G)} the

smallest team-size over all optimal solution protocols P .

III. BASIC PROPERTIES AND BOUNDS

Let us first state a few basic observations on the properties

of the universe under investigation.

A. Monotonicity and Sequentiality

To decontaminate a network, the team of agents must ex-

plore the network until the BV is found. Indeed, the execution

of any solution protocol P in a network G where no BV is

present, a BV-free execution, generates an exploration of all

the nodes of G.

Once the BV is found at a node u, clones of the BV will

move to every neighbour of u. This means that, any previously

explored neighbour of u will be contaminated unless an agent

is there at that time. A solution protocol is said to be monotone

if, in every execution it avoids recontamination of already

visited nodes. The interest in monotone protocols is because

monotonicity is necessary for optimality [4]:

Lemma 3.1: [4] Every (worst-case) optimal protocol is

monotone.

As a consequence, in our search for spread-optimal solu-

tions, we must restrict ourselves to solution protocols that are

monotone.

Consider now how the exploration of the network is per-

formed when executing a solution protocol. We say that a

solution protocol P is sequential if it prescribes the nodes to

be explored one a time, and the exploration of a new node

to be started only after the exploration of the previous node

has been completed. A very important fact is that, due to the

asynchrony of the system, sequentiality is not a handicap for

optimality.

Lemma 3.2: There exist everywhere optimal sequential pro-

tocols.

Proof: Let O be the set of everywhere optimal protocols,

and let P ∈ O. If P is sequential, the lemma holds. So let

P be not sequential; that is, in some BV-free execution it

require some agents to move concurrently to more that one

unexplored node. Since the system is asynchronous, delays

can force these nodes to be reached by the agents in any

order, including a strictly sequential one, without altering the

everywhere optimality of P . Consider now the protocol P1

identical to P except that those agents are required to visit

those nodes sequentially instead of concurrently. Clearly also

P1 ∈ O. By replacing in Pi ∈ O (i ≥ 1) a concurrent visit of

unexplored nodes by a sequential visit of the same nodes, we

can construct a protocol Pi+1 ∈ O with one less concurrent

visit. This sequence of everywhere optimal protocols is finite;

by construction, the last protocol Ps ∈ O in the sequence is

sequential, proving the Lemma.

Thus, by Lemmas 3.1 and 3.2, in our search for spread-

optimal solutions, we can restrict ourselves to protocols that

are sequential (i.e., in which the nodes are visited one at a

time) and monotone (i.e., all the visited neighbours of the

node being explored are be protected with a cleaner).

B. Residual Degrees and Feasible Permutations

Let P be the set of all monotone sequential solution proto-

col. Consider a protocol P ∈ P , and a graph G = (V,E) ∈ G.

Since P is sequential, the nodes of G are visited for the

first time one at a time, starting from the home base. Let

P [G, h] ≡ [x0, x1, x2, ..., xn−1] be the resulting ordered

sequence in a BV-free execution of P in G starting from

h = x0.

We call residual degree of xi in P [G, h] the number of

neighbours of xi following it in the sequence P [G, h]; i.e.,

ρ(xi) = |{xj ∈ V (xi) : n > j > i}|. We say that

ρ(P [G, h]) = maxn>i>0{ρ(xi)} is the residual degree of the

entire sequence πP [h].

Based on the notion of residual degree, a lower estimate on

the number spread(P,G, h) of casualties created, in the worst

case, by the cleaners executing P in G = (V,E) starting from

h ∈ V can be easily derived.

Lemma 3.3: spread(P,G, h) ≥ ρ(P [G, h]) + 1.

Proof: In a monotone protocol, when visiting a new node,

the still unexplored nodes are unprotected. Thus, if the BV is

at xi, all the neighbours of xi still unexplored, i.e. the set

{xj ∈ V (xi) : n > j > i}, will become contaminated. Since

one casualty is required to decontaminate each of them, the

total number of casualties, including the one occurred at xi,

is precisely ρ(xi) + 1.

By Lemma 3.3, it follows that to minimize spread, we need

to find a protocol that has minimum residual degree in all

graphs and for all choices of the home base. That is, our

quest is for a protocol P ∈ P such that ∀G = (V,E), ∀v ∈
V, ρ(P [G, h]) = spread(G, h).

To aid in our quest, we recall that the sequence P [G, h]
is a permutation of the n network nodes. Let us call a

permutation [x0, x1, x2, ..., xn−1] of the nodes of G feasible

for x0 if for all 1 ≤ i ≤ n − 1 there exists a path in

G from x0 to xi composed only of nodes whose index is

smaller than i; let Π(G, v) denote the set of all permutations

feasible for node v, and Π(G) = ∪v∈V Π(G, v) the set of

all feasible permutations of the nodes of G. Then, for a

given graph G, each sequential solution protocol P ∈ P
uniquely defines a set FP (G) of n feasible permutations, one

for every possible choice of the home base. Conversely, any

set F ⊆ Π(G) of n feasible permutations, each for a different

node of G, corresponds to the BV-free execution sequences

of some sequential solution protocol PF ∈ P in G. That is,

if α = [x0, x1, x2, ..., xn−1] ∈ F ⊆ Π(G) then α = P [G, x0]
for some P ∈ P .

In other words, to determine a spread-optimal decontami-

nation strategy for G, it suffices to determine for each h a

feasible permutation α for h such that ρ(α) = ρ(G, h). We

remind the reader that the graph G is however not known to

the cleaners.

Before proceeding let us establish an obvious but important

property of residual degrees in feasible permutations.

Lemma 3.4: Given a permutation α =
[z0, z1, ..., zn−1] feasible for z0, let also αi,j =
[z0, z1, ..., zi−1, zj, zi, zi+1, ..., zj−1, zj+1, ..., zn−1] be

feasible for z0, where 0 < i < j ≤ n − 1. Then

ρ(zl, αi,j) ≤ ρ(zl, α), for all l 6= j.

Proof: Permutation αi,j is the obtained from α by moving

zj immediately before zi and leaving the rest unchanged. Since

αi,j is feasible for z0, for each zp (0 ≤ p ≤ n − 1 there is

a path from z0 to zp composed only of predecessors of zp
in αi,j . This means that the the number of neighbours of zp
following it in αi,j (i.e., its residual degree in αi,j) is the same

in both α and αi,j for 0 ≤ p ≤ i − 1 and for j + 1 ≤ p ≤
n − 1. Furthermore, since zj appears before zi in αi,j , for

i ≤ p ≤ j − 1 the residual degree of zp in αi,j is the is either

one less than or equal to its residual degree in α, depending

on whether or not (zi, zp) ∈ E (i.e., they are neighbours).

IV. DECONTAMINATION WITH LOCAL KNOWLEDGE

We propose and analyze decontamination protocols that,

like in [5], consist of two phases, shadowed exploration and

elimination. In the shadowed exploration phase, starting from

the homebase h, the agents explore sequentially the nodes of

the graph, using agents (the shadows) to protect the already

explored neighbours of the node to be visited, and thus

ensure monotonicity of the solution. Once the BV node has

been found, causing BV clones to spread to the unprotected

neighbouring nodes, the elimination phase start by finally and

safely remove all the clones.

In our case, unlike [5], the agents do not have a priori

knowledge of the graph (e.g., a map); on the contrary, they

have only local knowledge restricted to neighbours at distance

at most two of the node where they currently are. The agents

discover the network (and construct a map) as they move.

Indeed the shadowed exploration phase is truly a distributed

exploration and map-construction process.

In the following we present and analyze two decontamina-

tion protocols, the first based on a simple“greedy” strategy,

the other using a “threshold” search strategy. We prove that

both protocols are everywhere optimal; furthermore, the total

number of agents used is asymptotycally optimal.

A. Greedy Strategy

1) General Description:

n the shadowed exploration phase, starting from h, the explo-

ration sequence is constructed by the agents while exploring.

Initially, only the homebase h and its 2-hop neighbourhood ia

know to the agents.

At each step, the agents select a node, the target, in the map

of the graph constructed so far. The target is chosen among

the unexplored neighbours of the already explored nodes (the

fronteer), according to a greedy criterion: the selected node is

one with minimum residual degree; should there be multiple

candidates, the one with the shortest distance1 from the last

target is chosen as the new target.

Once the target has been selected, agents (the shadows)

move to occupy the explored neighbours of the target, so

to protect them from BV clones. Once this operation is

concluded, an agent (the explorer) moves to the target.

If the target was not a BV node, the current map of the

network is updated so to include the information acquired from

visiting the target, and a new step of the exploration process

takes place. If instead the target was a BV node, the explorer

dies, the BV is removed from the target, and BV clones move

to all its neighbours. The clones arriving at the neighbours still

unexplored (and thus unprotected by shadows), transform them

into BV nodes; the clones arriving at the explored neighbours

of the target are destroyed by the shadows located there.

Once this operation is completed, the elimination phase

start. Note that at this time, the map contains all the new BV

nodes and their neighbours. In the elimination phase, each BV

node is decontaminated by an exploring agent moving there,

once all its non-BV neighbours have been occupied by shadow

agents.

2) Coordination and Synchronization:

The algorithm is described in Figure 1. Missing from the de-

scriptions are the details about how the coordination among the

agents and the synchronization required among the different

operations (e.g. all the shadow agents must be in place before

the explorer can move to the target node) are achieved. Time-

out cannot be employed since the system is asynchronous

and time delays unpredictable and unbounded. The solution

is however simple. One of the agents is used to perform the

role of coordinator and synchronizer; we shall call this agent

the leader. It is the leader’s task to mantain a map of the

explored network and its distance-two boundaries, with the

location of all agents. Another agent, the explorer, will be the

one visiting the unexplored nodes until it finds the BV (and

is destroyed).

At the beginning of each step, the leader and the explorer

are at the same node. The leader starts the step by selecting the

next target. v and determining its already-explored neighbours

Nex(v) = {z1, ...zp} based on the information on the map.

The explorer also computes the the target v and the neighbour

zp; it then moves to zp and waits there for instructions from the

leader. The leader meanwhile sequentially goes to the current

locations2 {y1, ...yp−1} of the shadow agents needed for this

step. When at location yi, the leader tells the agent there to

1symmetry broken arbitrarily.
2Initially, all agents are in the homebase.

become a shadow and to go to node zi ∈ Nex(v) to protect it;

the leader itself goes to zi, and waits there until the shadow

agent arrives; it then proceeds to the location yi+1 of the next

needed shadow agent. To reduce the total number of agents

used by the protocol, the leader will act as the shadow of

the last node zp ∈ Nex(v); thus, after the leader determines

that a shadow agent has arrived at zp−1, it moves to zp and

acts as the shadow agent for that node. All movements of all

the agents during this process is through the already explored

part of the graph, and thus safe. Once both the leader and the

explorer are at zp, the leader gives the order and the explorer

moves to the target node.

At this point two outcomes are possible: either the explorer

returns to zp or a clone arrives there. In the first case, the

next step of the shadowed exploration takes place, with the

leader updating the map with the information reported by the

explorer and repeating the process just described.

In the second case, the leader disables the arriving clone and

starts the coordination of the elimination phase. The leader

starts the elimination phase by updating its map to include the

locations of the new BV nodes (the unexplored neighbours

of the last target v). It then starts the process by going

sequentially to the current locations of the agents required to

clean the BV nodes, notifying them of the current map, and

assigning a BV node to each of them to clean. Each of those

cleaners independently reaches the assigned BV node (by first

going to v and then to its destination) without any further need

of coordination.

3) Analysis:

We now show that the BV-free exploration sequence created

by protocol GREEDY EXPLORATION has minimal residual

degree.

Theorem 4.1: Let π =< x0, x1, ..., xn−1 > be the BV-free

exploration sequence created by procedure GREEDY EXPLO-

RATION with x0 = h. Then ρ(π) = ρ[h].

Proof: Let α =< h, y1, ..., yn−1 > be an optimal

exploration sequence, i.e., a feasible permutation with minimal

residual degree ρ[h]. If α = π, the theorem holds. Thus let us

consider the case α 6= π.

Let i ≥ 1 be the smallest index such that

xi 6= yi, and let xi = yj . Consider now the sequence

αi,j = [y0, y1, ..., yi−1, yj , yi, yi+1, ..., yj−1, yj+1, ..., yn−1] =
[x0, x1, ..., xi−1, xi, yi, yi+1, ..., yj−1, yj+1, ..., yn−1], where

y0 = x0 = h. The feasibility of αi,j follows from the

feasibility of α and that, by construction, yj = xi is a

neighbour of some xl with l < i. Thus, by Lemma 3.4 we

have that ρ(yl, αi,j) ≤ ρ(yl, α), for all l 6= j. That is, in αi,j

the residual degree of every node, except possibly for yj , is

not more than in α.

Consider now yj in αi,j ; and recall ρ(yj , αi,j) = ρ(xi, π).
Consider the step of the algorithm in which xi is chosen;

obviously at that time xi belongs to the frontier. Since yi is a

neighbour of some xl with l < i, in that step also yi and/or

xl belong to the frontier. By definition, ρ(yi, α) ≤ ρ(α) is a

GREEDY EXPLORATION

(* Initialization *)

All agents initially at homebase, h.

M = (VM , EM) := N2(h);
(* initial map is the 2-neighborhood of h*)

Vex := {h}; (* only the h is explored*)

Vun := VM \ {h}; (* initial unexplored nodes*)

B := h; ((* only the h borders the unexplored nodes*)

Fr := N(h); (*unexplored frontier*)

π := [h]; (* the h is the first in the search sequence*)

Found:= FALSE;

(* Iteration *)

while Found=FALSE

Forall v ∈ Fr do r(v) := |{u ∈ Vun : (u, v) ∈ EM}|;
Choose v ∈ Fr such that r(v) is minimum;

Nex(v) := {u ∈ Vex : (u, v) ∈ EM};

Locate a shadow agent at each u ∈ Nex(v);
Move an exploring agent to v;

if (v 6= BV) then (* update Map and variables*)

M := M ∪N2(v);
Vex := Vex ∪ {v};

Vun := VM \ Vex;

B := {x ∈ Vex : ∃y ∈ Vun(x, y) ∈ EM};

Fr := {x ∈ Vun : ∃y ∈ Vex(x, y) ∈ EM};

π := π ∗ [v]; (*v is next in the search sequence*)

else

Found := TRUE

endwhile

Start ELIMINATION

Fig. 1. Greedy

node with residual degree not exceeding the current threshold

and thus ρ(xl, α) = ρ(yl, α) ≤ ρ(α); this implies that the

algorithm would not have chosen xi in that step if ρ(xi, π) >
ρ(α); hence, ρ(yi, α) ≤ ρ(α).

Summarizing, in αi,j the residual degree of every node,

including yj , is not more than in α; that is, also αi,j has

minimal residual degree ρ(α) and is thus an optimal explo-

ration sequence. In other words, if an optimal exploration

sequence (e.g., α) coincides with π in the first i elements,

then there exists an optimal exploration sequence (e.g., αi,j)

that coincides with π in the first i+1 elements. By repeating

this argument, the optimality of π follows; i.e., ρ(π) = ρ[h].

Consider now the size of the team of agents (including

casualties) employed by the protocol.

Theorem 4.2: Protocol GREEDY EXPLORATION employs

∆+ 1 agents.

Proof: During the shadowed exploration phase, one ex-

ploring agent is used to move to the target, and one shadow is

used to protect each of the already explored neighbours of the

target; hence, since the leader is also a shadow, at most ∆+1
agents are needed in this phase. In the elimination phase, the

total number of agents needed is at most ρ[h] cleaners; since

ρ[h] < ∆, the claim holds.

Lemma 4.1: Let G be a d-regular graph. Then any solution

protocol needs at least d+ 1 agents.

Proof: In a d-regular graph G, ρ(P [G, h]) = d − 1
for every homebase h. By Lemma 3.3, spread(P,G, h) ≥
ρ(P [G, h]) + 1; since at least one agent must survive, the

lemma follows.

Thus, by Theorem 4.2 and Lemma 4.1, it follows that

GREEDY EXPLORATION is worst-case optimal with respect

to the team size.

B. Threshold Strategy

The protocol described in the previous section is optimal

both in terms of casualties and number of agents used. In this

section we describe and analyze a simple variant with the same

properties. Also this algorithm is sequential and it chooses a

single target at each step of the shadowed exploration phase.

The coordination and synchronization is exactly as in the

previous algorithm. The main idea of the algorithm is to select

as a target, among the nodes of the frontier, not the one with

smallest residual degree (like in the “greedy” protocol), but

rather one with residual degree not greather than a threshold.

Initially the threshold is set to the smallest residual degrees

of the neighbours of the homebase. In subsequent steps, should

all frontier nodes have residual degree above the threshold, the

threshold is increased to the smallest of those residual degrees.

When more than one frontier node is within the threshold, the

one closest to the last explored node is chosen.

The algorithm is described in Figure 2, where the coordi-

nation and synchronization details are omitted.

We will now show that π has minimal residual degree ρ[h].

Theorem 4.3: Let π =< x0, x1, ..., xn−1 > be the ex-

ploration sequence created by protocol THRESHOLD EXPLO-

RATION from homebase h = x0. Then ρ(π) = ρ[h].

Proof: Let τ(i) be the value of the threshold τ when xi

was explored in the execution of THRESHOLD EXPLORATION

generating π; thus, by construction, τ(j) ≤ τ(j+1) (0 ≤ j <

n− 1) and ρ(π) = τ(n)

Let α =< y0, y1, ..., yn−1 > be an optimal exploration

sequence, i.e., a feasible permutation for h = y0 with minimal

residual degree ρ[h]. If α = π, the theorem holds. Thus let

us consider the case α 6= π. Let i ≥ 1 be the smallest

index such that xi 6= yi, and let yj = xi. Consider now

the sequence αi,j obtained by moving yj before yi; that is,

αi,j = [y0, y1, ..., yi−1, yj, yi, yi+1, ..., yj−1, yj+1, ..., yn−1]
= [x0, x1, ..., xi−1, xi, yi, yi+1, ..., yj−1, yj+1, ..., yn−1], where

y0 = x0 = h.

The feasibility of αi,j follows from the feasibility of α and

that, by construction, xi is a neighbour of some xl with l < i.

THRESHOLD EXPLORATION

(* Initialization *)

All agents initially at homebase, h.

M = (VM , EM) := N2(h);
(* initial Map is the 2-neighborhood of homebase*)

Vex := {h}; (* only the h is explored *)

Vun := VM \ {h}; (* initial unexplored nodes *)

Fr := N(h); (*unexplored frontier*)

π := [h]; (* the h is the first in the search sequence*)

τ := Min{|{u ∈ Vun : (u, v) ∈ EM}| : v ∈ Fr}
(* initial threshold *)

Current := h; Found:= FALSE;

(* Iteration *)

while Found=FALSE

Forall v ∈ Fr do r(v) := |{u ∈ Vun : (u, v) ∈ EM}|;
τ := Max{τ,Min{r(v) : v ∈ Fr}};

(* update threshold *)

Choose v ∈ Fr closest to Current with r(v) ≤ τ

Nex(v) := {u ∈ Vex : (u, v) ∈ EM};

Locate a shadow agent at each u ∈ Nex(v);
Move an exploring agent to v;

if (v 6= BV) then (* update map and variables*)

M := M ∪N2(v); (* update map*)

Vex := Vex ∪ {v};

Vun := VM \ Vex;

Fr := {x ∈ Vun : ∃y ∈ Vex, (x, y) ∈ EM};

Current:= v; π := π ∗ [v];
else

Found := TRUE

endwhile

Start ELIMINATION

Fig. 2. Threshold

Thus, by Lemma 3.4, we have that ρ(yl, αi,j) ≤ ρ(yl, α), for

all l 6= j. That is, in αi,j the residual degree of every node,

except possibly for yj (i.e., xi), is not more than in α and (due

to the optimality of α) no more than ρ[h]. This also means

that the first i − 1 thresholds are all no more than ρ[h]; in

particular, τ(i − 1) ≤ ρ[h] .

Let now prove that ρ(xi, αi,j) ≤ ρ[h]. By definition, ρ[h] ≥
ρ(xi−1, α) = ρ(xi−1, π) = τ(i − 1). Consider τ(i), i.e. the

threshold when xi is chosen constructing π; by construction

τ(i−1) ≤ τ(i). If τ(i−1) = τ(i), then trivially ρ(xi, αi,j) ≤
ρ[h]. Thus consider the case τ(i−1) < τ(i). This case occurs

only if the residual degree of all the nodes in fronteer, after

the exploration of xi−1, is greater than τ(i − 1); then τ(i) is

set to the smallest among the residual degrees of the nodes in

the fronteer; in particular, τ(i) = ρ(xi, π).

Since α and π concide for the first i elements, the number

of unexplored neighbours of yi after xi−1 = yi−1 has been

explored is precisely ρ(yi, α) which is no more that ρ[h], since

α is optimal. Observe that, when xi is selected as the next

target in π, also yi belongs to the fronteer (it follows from

feasibility of α); thus, the residual degree of yi at that time is

at least τ(i). In other words ρ(xi, αi,j) = ρ(xi, π) = τ(i) ≤
ρ(yi, α) ≤ ρ[h].

Summarizing, in αi,j the residual degree of every node,

including yj , is not more than in α; that is, also αi,j has min-

imal residual degree ρ(α) and is thus an optimal exploration

sequence.

In other words, if an optimal exploration sequence (e.g., α)

coincides with π in the first i elements, then there exists an

optimal exploration sequence (e.g., αi,j) that coincides with

π in the first i+ 1 elements. By repeating this argument, the

optimality of π follows; i.e., ρ(π) = ρ[h].

With precisely the same proof of Theorem 4.2, and by

Lemma 4.1, we have that also this protocol uses an optimal

total number of agents.

Theorem 4.4: Protocol THRESHOLD EXPLORATION em-

ploys at most ∆+ 1 agents

V. ROOTED ACYCLIC ORIENTATION WITH MINIMUM

OUTDEGREE

In this section we establish an interesting connection be-

tween solutions of the BVD problem and the problem of

determining rooted acyclic orientations of unoriented graphs

with minimum outdegrees. As a consequence, our protocols

provide a distributed optimal solution to this graph optimiza-

tion problem. Due to space constraints, the proofs are omitted.

Given an undirected graph G = (V,E), an orientation λ of

G is an assignment of direction to each edge. Every orientation

λ transforms G into a directed graph ~Gλ = (V, ~Eλ). Let

D(G) be the set of all directed graphs generated by acyclic

orientations of G An acyclic orientation λ of G is said to be

rooted if ~Gλ has a single source (i.e., exactly one node of

zero in-degree). Let R(G, v) be the set of all directed graphs

generated by acyclic orientations of G rooted in v, and let

R(G) = ∪v∈V {D(G, v)}.

Given a directed acyclic graph ~G, let d+(u, ~G) be the out-

degree of u in ~G; and let d+(~G) = Maxu6=v{d+(u, ~Gv)}
be the maximum out-degree among the nodes. An acyclic

orientation λ of G is said to be optimal if d+(~Gλ) ≤ d+(~G′)
for all ~G′ ∈ D(G); similarly an acyclic orientation λ of G

rooted in v optimal if d+(~Gλ) ≤ d+(~G′) for all ~G′ ∈ R(G, v).

The interesting connection between BV-decontamination

and otimal rooted acyclic orientations is provided by the

property discussed next.

As well known, to any directed acyclic graph ~G corresponds

a partial order “� ~G
” on the nodes of the graph, where

x � ~G
y if and only if there is a directed path from x to

y. A linear extension of “� ~G
” is any total order “<” on the

nodes consistent with � ~G
; that is, if x � ~G

y then x < y.

The sequence of the nodes ordered according to < defines a

unique permutation X< = [x0, x1, x2, ..., xn−1] of the nodes.

Let Γ(~G) denote the set of all permutations defined by the

linear extensions of the partial order � ~G
.

Theorem 5.1: Let ~G ∈ R(G, v) be a directed acyclic

orientation of G = (V,E) rooted in v ∈ V .

1) Γ(~G, v) ⊆ Π(G, v)

2) ∀ X ∈ Γ(~G, v), ρ(X) = d+(~G).

In other words, in a directed acyclic graph ~G ∈ R(G, v)
rooted in v, every linear extension of � ~G

defines a feasible

permutation; additionally, all these permutations have the same

residual degrees, which coincides with the maximum out

degree in ~G. As a consequence

Theorem 5.2: Let ~G ∈ R(G, v) be such that ∀~G′ ∈
R(G, v), d+(~G) ≤ d+(~G′). Then ∀ X ∈ Γ(~G, v), ρ(X) =
ρ(G, v)

That is, the problem of finding an acyclic orientation of G with

v as its only source and with the minimum out-degree possible

is equivalent to the problem of determining an optimal feasible

permutation for v.

In the previous sections we have seen two protocols that

determine an optimal feasible permutation in a decentralized

way. By exploiting the result of Theorem 5.2, we can use

them to construct an optimal rooted acyclic orientation in a

distributed way, using a single agent.

In our protocols, a BV-free exploration sequence π =<

x0, x1, ..., xn−1 > is created (different depending on the

protocol) stating from the homebase x0. When at xi the

explorer has enough information to determine what the next

target (i.e., xi+1) is; the explorer moves sequentially from xi

to xi+1. Consider now single agent protocol ROOTED ORI-

ENTATION, described in Figure 3. In this protocol, the single

agent performs exactly the same operations as performed by

the explorer in the BV decontamination protocol being used.

The only difference is that now the agent, when visiting a

node for the first time (starting from the homebase), orients

as outgoing all the edges connecting that node to its still

unexplored neighbours.

The selection of xi+1 when at xi will be different depending

on whether we follow the greedy strategy of protocol GREEDY

EXPLORATION (Protocol GREEDY ROOTED ORIENTATION)

with or the threshold strategy of protocol GREEDY EX-

PLORATION (Protocol THRESHOLD ROOTED ORIENTATION).

Regardless of the strategy, the result is an optimal rooted

orientation.

Theorem 5.3: Both GREEDY ROOTED ORIENTATION and

THRESHOLD ROOTED ORIENTATION produce an optimal

acyclic orientation rooted in the homebase.

In a single agent computation, the important cost measure

is the number of moves performed by the agent.

Let π =< x0, x1, ..., xn−1 > be the sequence obtained by

the strategy employed, and let disex(xi, xi+1) be the shortest

distance between xi and xi+1 in the explored part of the graph

when xi was visited for the first time. Then the number of

ROOTED ORIENTATION

(* Initialization *)

Explorer initially at homebase x0.

M = (VM , EM) := N2(x0); (*init map is hop-2 of x0*)
~E = ∅.

Vex := {x0}; (*only the home base is explored*)

Vun := VM \ {x0}; (*init unexplored nodes*)

(* Iteration *)

while Vun 6= ∅
determine xi

move to xi

ORIENT(xi)

M := M ∪N2(xi); (*update map*)

Vex := Vex ∪ {xi}; (*update explored nodes*)

Vun := VM \ Vex; (*update unexplored nodes*)

endwhile

ORIENT(x)

forall y ∈ N(x) ∩ Vun do ~E := ~E ∪ {(
−−→
x, y)}

Fig. 3. Orient

moves the explores performs is precisely

n−1∑

i=0

(disex(xi, xi+1))

Since disex(xi, xi+1) < i+1, it follows that the total number

of moves for both protocols is less than 1

2
n2. This upperbound

is however quite coarse.

A more precise bound can be easily established for the

THRESHOLD ROOTED ORIENTATION protocol as follows.

Theorem 5.4: The total number of moves of THRESHOLD

ROOTED ORIENTATION is less than 2n∆.

VI. CONCLUSIONS

In this paper, we have considered the Black Virus decon-

tamination problem in networks of arbitrary and unknown

topology. We have presented an optimal solution that works in

a fully decentralized way by agents endouded with only local

2-hop visibility. The algorithm works in an asycnrhnous set-

ting, with the minimum number of system agents’ casualties,

network infections and total number of employed agents. We

have also shown a correspondence between this problem and

the one of computing a rooted acyclic orientation of a given

graph with minimum outdegrees. Due to this correspondence,

with little modifications, our protocols provide a distributed

optimal solution to this graph optimization problem.

REFERENCES

[1] Y. Asahiro,E. Miyano, H. Ono, and K. Zenmyo. Graph orientation
algorithms to minimize the maximum outdegree. Int. J. Found. Comput.

Sci. 18(2): 197-215, 2007.

[2] L. Barrière, P. Flocchini, P. Fraignaud, and N. Santoro. Capture of an
intruder by mobile agents. 14th Symposium on Parallel Algorithms and

Architectures (SPAA), 200-209, 2002.
[3] L. Blin, P. Fraignaud, N. Nisse, and S. Vial. Distributed chasing of

network intruders. Theoretical Computer Science 399 (1-2): 12-37. 2008.
[4] J. Cai, P. Flocchini, and N. Santoro. Decontaminating a network from

a black virus. Int. J. Networking and Computing, 4(1): 151-173, 2014
[5] J. Cai, P. Flocchini, and N. Santoro. Black virus decontamination

in arbitrary networks. 3rd Conference on Information Systems and

Technologies, Advances in Intelligent Systems and Computing 353,
Springer, 991-1000, 2015.

[6] J. Chalopin, S.Das, A. Labourel, and E. Markou. Black hole search
with finite automata scattered in a synchronous torus. 25th International

Symposium on Distributed Computing (DISC), 432–446, 2011.
[7] C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults

in a network using multiple agents. 10th International Conference on

Principles of Distributed Systems (OPODIS), 320–332, 2006.
[8] J. Czyzowicz, S. Dobrev, R. Královic, S. Miklı́k, and D. Pardubská.

Black hole search in directed graphs. 16th International Colloquium
on Structural Information and Communication Complexity (SIROCCO),
182–194, 2009.

[9] J. Czyzowicz, D. R. Kowalski, E. Markou, and A. Pelc. Complexity of
searching for a black hole. Fundamenta Informaticae, 71(2–3):229–242,
2006.

[10] S. Dobrev, P. Flocchini, R. Královic, P. Ruzicka, G. Prencipe, and
N. Santoro. Black hole search in common networks. Networks,
47(2):61–71, 2006.

[11] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for
a black hole in arbitrary networks: Optimal mobile agents protocols.
Distributed Computing, 19(1):1–19, 2006.

[12] S. Dobrev, P. Flocchini, and N. Santoro. Mobile search for a black hole
in an anonymous ring. Algorithmica, 48:67–90, 2007.

[13] P. Flocchini, M.J. Huang, and F.L. Luccio. Decontamination of hyper-
cubes by mobile agents. Networks 52 (3): 167-178, 2008.

[14] P. Flocchini, M.J. Huang, and F.L. Luccio. Decontaminating chordal
rings and tori using mobile agents. International Journal on Foundations

of Computer Science 18 (3): 547-563, 2006.
[15] P. Flocchini, F.L. Luccio, and L.X. Song. Size optimal strategies for

capturing an intruder in mesh networks. International Conference on

Communications in Computing (CIC), 200-206, 2005.
[16] P. Flocchini and N. Santoro. Distributed Security Algorithms For Mobile

Agents. Chapter 3. in J. Cao and S.K. Das (Eds.) “Mobile Agents in
Networking and Distributed Computing”, Wiley, 2012.

[17] F.V. Fomin, D.M. Thilikos. An annotated bibliography on guaranteed
graph searching. Theoretical Computer Science 399(3): 236-245, 2008

[18] F.V. Fomin, D.M. Thilikos, and I. Todineau. Connected graph searching
in outerplanar graphs. 7th International Conference on Graph Theory
(ICGT), 2005.

[19] P. Glaus. Locating a black hole without the knowledge of incoming link.
5th Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks

(ALGOSENSOR), 128–138, 2009.
[20] D. Ilcinkas, N. Nisse and D. Soguet. The cost of monotonicity in

distributed graph searching. Distributed Computing 22 (2), 117-127,
2009.

[21] N. Imani, H. Sarbazi-Azadb, and A.Y. Zomaya. Capturing an intruder
in product networks. Journal of Parallel and Distributed Computing 67
(9): 1018–1028, 2007.

[22] N. Imani, H. Sarbazi-Azad, A.Y. Zomaya, and P. Moinzadeh. Detecting
threats in star graphs. IEEE Trans. Par. and Dist. Systems 20 (4): 474-
483 , 2009.

[23] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation
bounds for black hole search problems. Networks, 52(4):216–226, 2008.

[24] F.L. Luccio Contiguous search problem in Sierpinski graphs. Theory of

Computing Systems 44(2): 186-204, 2009.
[25] F. Luccio and L. Pagli. A general approach to toroidal mesh decon-

tamination with local immunity. 23rd IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 1-8, 2009.
[26] F. Luccio, L. Pagli, and N. Santoro. Network decontamination in

presence of local immunity. Int. J. Foundation of Computer Science
18(3): 457–474, 2007.

[27] N. Nisse. Connected graph searching in chordal graphs. Discrete Applied

Mathematics 157 (12): 2603-2610, 2009
[28] M. Venkateswaran. Minimizing maximum indegree. Discrete Applied

Mathematics 143: 374-378, 2004.

