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Abstract

In this paper we consider a continuous version of cellular automata (fuzzy CA) obtained by “fuzzification” of the disjunctive
normal form which describes the corresponding Boolean rule. We concentrate on fuzzy rule 90, whose Boolean version
deserves some attention for the complex patterns it generates. We show that the behavior of fuzzy rule 90 is very simple, in
that the system always converges to a fixed point. In the case of finite support configurations, we also show aperiodicity of
every temporal sequences, extending and complementing Jen’s result on aperiodicity of Boolean rule 90.We finally show and
analyze the remarkable fact that, depending on the level of state-discreteness used to visualize the dynamics of fuzzy rule
90, the display might show (after a transient) the well known complex Boolean behavior instead of the (correct) convergence
to a fixed point. The results of the analysis lead not only to a caveat on the dangers of visualization, but also an unexpected
explanation of the dynamics of Boolean rule 90. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The existing models for spatially extended systems have been extensively studied and applications have been
found in a variety of contexts. For example, Boolean cellular automata (CA) have been introduced by Von Neumann
as models of self-organizing/reproducing behaviors [15] and their applications range from ecology to theoretical
computer science (e.g., [5,7,8,13,16]). Coupled map lattices (CML) have been introduced by Kaneko as simple
models with the features of spatio–temporal chaos, and have now applications in many different areas like fluid
dynamics, biology, chemistry, etc. (e.g., [1,11,12]).
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These models correspond to different levels of “discreteness”; e.g. partial differential equations represent the
continuous extreme (being continuous in space, time and states), CA represent the discrete extreme (being discrete
in space, time, and state), coupled map lattices are somehow in between (being discrete in space, time, but continuous
in state).

An interesting area of investigation is the relationship among the different levels of discretization; in particular,
some studies have been done to approximate CML by CA; i.e., to “discretize” some types of CML (e.g., [2,3]).

Fuzzy CAsare an attempt to perform the reverse process; i.e., to start from a CA and “fuzzify” the disjunctive
normal form which describes its rule [4]. Introduced to study the impact that state-discretization has on the behavior
of these systems, they have been used to investigate the result of perturbations (e.g. noisy sources, computation
errors, mutations, etc.) on the evolution of Boolean CA [6]. In this sense, this continuous-state CA model is a
particular case of CML.

The goal of our work is the analytical study of dynamical properties of fuzzy CA rules which generalize Boolean
CAs. In this paper, we focus on rule 90; its Boolean evolution, although linear, is considered to be complex and has
been the object of extensive investigation (see e.g. [9,10,14]).

We first show that the behavior of the fuzzy version, which has never been studied before, is actually very
simple: independent of the initial configurations, the system converges to a fixed homogeneous configuration. In the
particular case of finite support configurations, we generalize Jen’s result [10, Prop. 2] on aperiodic sequences in
Boolean rule 90: we prove aperiodicity of temporal sequences in each site of the spatio–temporal diagram of fuzzy
rule 90, we actually show periodicity also in every diagonal and even in every nontrivial temporal sequence.

We then observe an interesting behavior of the rule in the visualization process. When visualizing the space–time
diagram of fuzzy rule 90, the interval [0,1] must be discretized, since only a finite number of states can obviously be
represented. We show that this discretization process, inevitable for displaying the behavior of the rule, is however
very dangerous in that it could mislead the observer by showing a totally incorrect dynamics. In fact, when the fixed
point 1

2 is an extremum of the discretization interval, the space–time diagram of fuzzy rule 90 shows fractal-like
patterns, although the system actually converges to the fixed point.

We show that such a wrong display, due to a certain discretization of the state space, after a short transient,
surprisingly shows exactly the same behavior of Boolean rule 90. Our analysis of this phenomenon provides an
explanation about the dynamics of Boolean rule 90: its complex patterns describe the oscillations of fuzzy rule 90
around its fixed point.

2. Basic definitions

A cellular automaton is a collection of cells arranged on a graph. All cells share the same local space (i.e., the set
of values cells range in), the same neighborhood structure (i.e., the cells to which a cell is connected), and the same
local function (i.e., the function defining the effect of neighbors on each cell, also called transition function or rule).
The global evolution is defined by the synchronous update of all values according to the local function applied to
the neighborhood of each cell. A configuration of the automaton is a description of all cell values.

Given a linear bi-infinite lattice of cells, the local Boolean space{0, 1}, the neighborhood structure〈 left neighbor,
itself, right neighbor〉, and a local ruleg : {0, 1}3 7→ {0, 1}, the global dynamics of anelementary CAis defined by

f : {0, 1}Z 7→ {0, 1}Z s.t. ∀i ∈ Z, f (x)i = g(xi−1, xi, xi+1).

The local rule is defined by the eight possible local configurations a cell can detect in its direct neighborhood:

(000, 001, 010, 011, 100, 101, 110, 111) → (r0, . . . , r7),
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where each triplet represents a local configuration of the left neighbor, the cell itself, and the right neighbor. In
general, the value

∑
i=0,... ,72i ri is used as the name of the rule. The local rule of any Boolean CA is canonically

expressed as adisjunctive normal form:

g(x1, x2, x3) =
∨

i|ri=1

∧
j=1,... ,3

x
dij

j ,

wheredij is thej th digit, from left to right, of the binary expression ofi, andx0 (resp.x1) stands for¬x (resp.x).

Definition 1. A fuzzy CA is obtained by fuzzification of the local function of a Boolean CA: in the disjunctive
normal form,(a ∨ b) is replaced by(a + b), (a ∧ b) by (ab), and(¬a) by (1 − a). The resulting local rule is a
real-valued function simulating the original function on{0, 1}3, with l(a, 0) = 1 − a andl(a, 1) = a:

g : [0, 1]3 7→ [0, 1] s.t. g(x1, x2, x3) =
∑

i=0,... ,7

ri
∏

j=1,... ,3

l(xj , di,j ).

The usual fuzzification of the expressiona ∨ b is max{1, a + b} so as to ensure that the result is not larger than
1. Note, however, that taking(a + b) for the CA fuzzification does not lead to values greater than 1 since the sum
of all the expressions for rule 255 is 1, and so every possible partial sum must be bounded by 1.

Example 2. Consider rule 14= 2 + 4 + 8:

(000, 001, 010, 011, 100, 101, 110, 111) → (0, 1, 1, 1, 0, 0, 0, 0).

The canonical expression of rule 14 is

g14(x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3).

The fuzzification process after simplification yields

g14(x1, x2, x3) = (1 − x1) · (x2 + x3 − x2 · x3).

In the rest of this paper, unless specified otherwise, we will study fuzzy rule 90, defined by the local function

g : [0, 1]3[0, 1] 7→ [0, 1] s.t. g(x, y, z) = x + z − 2xz.

3. Homogeneous configurations

The first step of our analysis consists in a strong assumption on the values undertaken by the fuzzy cells of the
automaton we consider: they are all initialized to the same value and, as the global dynamics is homogeneous, all
subsequent configurations are homogeneous, too. This reduces the infinite-dimensional system to a one-dimensional
one, the dynamics of which is analyzed in a straightforward way. The motivation is to get a clear idea of the local
process.

The reduced function is

h : [0, 1] 7→ [0, 1] s.t. h(x) = 2x(1 − x).

It has two fixed points: 0 and12. The absolute value of the first derivativeh′(x) = 2(1 − 2x) evaluated in each of
these fixed points gives|h′(0)| = 2 and|h′(1

2)| = 0. Thus, 0 turns out to be repelling, and1
2 is an attractor. The

second order Taylor expansion ofh aroundx is

h(x + u) = h(x) + h′(x)u + 1
2h′′(x)u2 = 2x(1 − x) + (2 − 4x)u − 2u2
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Table 1
Evolution from 1

4 in a zero background

and, around the fixed points, we haveh(u) ≈ 2u andh(1
2 + u) = 1

2 − 2u2. Initial conditions close to zero are
essentially multiplied by two, and attracted by1

2: for anyu ∈ (−1
2, 1

2), h(1
2 + u) is strictly closer to1

2 than 1
2 + u.

Thus, this one-dimensional system behaves in a very simple way: 0 is a repelling fixed point; 1 is attracted to 0
in one iteration;12 is an attracting fixed point whose basin is the open interval(0, 1).

4. Single values in zero backgrounds

In this second analysis, all cells but one are initially set to 0. This step is motivated by the classical analysis
of finite support configurations of Boolean CA [10]. For example, starting from a single valuea = 1

4 in a zero
background, the spatio–temporal evolution is represented in Table 1.

More abstractly, assuminga 6= 0 andga(x) = g(x, •, a) = g(a, •, x) = a + x(1 − 2a), we have the evolution
of Table 2. What is the rule underlying these numbers, if any?

Definition 3. The spatio–temporal diagram from an initial configurationx0 is the double sequence(xt
i )i∈Z,t∈N

wheret expresses time steps, andi denotes cell indices.

Definition 4. Thej th diagonal is the sequence(xi+2(j−1)
i )i≥0.

Definition 5. The light cone from a cellxt
i is the set{xt+p

j |p ≥ 0 ∧ j ∈ {i − p, . . . , i + p}}.
Proposition 6. The second diagonal of the spatio–temporal diagram obtained by the evolution of fuzzy rule 90
from a single valuea ∈ (0, 1) in a zero background converges to1

2.

Proof. The first diagonal starting from the central non-zero valuea is uniformly equal toa. The second diagonal,
from h(a), can be obtained by successive iterations ofga(x). It has exactly one fixed pointx = 1

2, independently
of a. The absolute value of the slope of this linear function is smaller than one iffa ∈ (0, 1). This means that the

Table 2
Evolution froma in a zero background
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second diagonal converges to1
2 as time goes to infinity. �

Let f (t, i) =
(

t
1
2(t + i)

)
, where

(
a

b

)
= a!

b!(a − b)!
.

Proposition 7. The spatio–temporal diagram from a single valuea ∈ (0, 1) in a zero background is explicitly given
by: ∀t ∈ N,

xt
i =

{
1
2(1 − (1 − 2a)f (t,i)) if t + i is even andi ∈ {−t, . . . , t},
0 otherwise.

By induction. The first case is straightforward:x0
0 = a and∀i 6= 0, x0

i = 0. The inductive case is twofold.
• If (t + 1) + i is odd,i > t + 1 or i < −t − 1, thenxt

i−1 = xt
i+1 = 0, whencext+1

i = 0.
• Otherwise,(t + 1) + i andt + (i − 1) are even, andi ∈ {−t − 1, . . . , t + 1}. Thus, if−(t − 1) ≤ i ≤ t − 1, then

xt+1
i = g(xt

i−1, •, xt
i+1) = 1

2(1 − (1 − 2a)f (t,i−1)+f (t,i+1)) = 1
2(1 − (1 − 2a)f (t+1,i)).

The two limit cases arei − 1 = −t − 2 and, symmetrically,i + 1 = t + 2. Let us examine the first one:

xt+1
i = xt+1

−t−1 = g(xt
−t−2, •, xt

−t ) = g(0, •, xt
−t ) = xt

−t = 1
2(1 − (1 − 2a)f (t,−t)) = a.

Thus,any infinite sequence of non-zero termsin the diagramconverges to1
2, provided that it is embedded in

the light cone originating from the centrala, and the sequence of non-zero time steps tends to infinity. The central
column, any diagonal, any sequence containing horizontal segments or even backward loops, they all converge
to 1

2.

Corollary 8. Letx0
0 = a ∈ (0, 1),x0

i 6=0 = 0,i : N 7→ Zandτ : N 7→ Nbe two functions such thati(0) = τ(0) = 0,

|i(j)| ≤ τ(j), x
τ(j)

i(j) 6= 0, and limj→∞τ(j) = ∞. Then, the sequence(xτ(j)

i(j) )j∈N converges to12.

Remark 9. Exactly as in nontrivial evolutions of Boolean rule 90[10], any nontrivial infinite sequence of states
taken in the spatio–temporal evolution of fuzzy rule 90 from a single value in a zero background is aperiodic, due
to Proposition7. On the other hand, any such sequence converges to a specific value, here1

2, which was not the
case of Boolean rule 90.

Remark 10. If the initial configuration contains two consecutive values, a and b, in a zero background, the result
is obtained by superposition of the individual diagrams obtained from a and b. Let(xt

i ) be such thatx0
0 = a and

∀i 6= 0, x0
i = 0, (yt

i ) be such thaty0
1 = b and∀i 6= 1, y0

i = 0, then(zt
i = xt

i + yt
i ) is the diagram starting from

z0
0 = a, z0

1 = b and∀i ∈ Z\{0, 1}, z0
i = 0. Unfortunately, this property cannot be extended to larger finite support

configurations.

5. Infinite heterogeneous configurations

Here, we extend the analysis to evolutions starting from heterogeneous configurations, i.e., initial values chosen
arbitrarily in (0, 1). With such a weak assumption, we are, of course, not able to derive the closed-form expression
of all xt

i , but the last result mentioned in Section 4 still holds: we prove that any sequence of non-zero terms in the
spatio–temporal diagram converges to1

2. We first establish useful lemmas, we then prove the main result. Let us
rewrite the local functiong as follows:

φ(x, y) = g(1
2 + x, •, 1

2 + y) = 1
2 − 2xy. (1)
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Lemma 11. The function g is contracting around12:

∀x, y ∈ (0, 1
2) ∪ (1

2, 1), |g(x, •, y) − 1
2| < min{|x − 1

2|, |y − 1
2|}.

Proof. Let us change the variables:x = 1
2 + v, y = 1

2 + w, and rewrite the left-hand side expression:|g(x, •, y) −
1
2| = |g(1

2 + v, •, 1
2 + w) − 1

2| = |φ(v, w) − 1
2| = |2vw|. Since 0< |w| < 1

2, we have|2vw| < |v| = |x − 1
2|.

Symmetrically,|2vw| < |w| = |y − 1
2|. �

Lemma 12. The function g is k-contracting around12 on [ 1
2(1 − k), 1

2(1 + k)]:

∀x, y ∈ [ 1
2(1 − k), 1

2(1 + k)], |g(x, •, y) − 1
2| ≤ k min{|x − 1

2|, |y − 1
2|}.

Proof. Changing variables as in the previous lemma, we have|g(x, •, y) − 1
2| = |2vw| ≤ 2(k/2)|v|, since

y = w + 1
2 ∈ [ 1

2(1 − k), 1
2(1 + k)]. �

The next example gives a convergence rate for purely temporal sequences of the diagram (i.e., columns), where
every other row is ignored (sinceg does not depend on its central argument). The proof easily follows from the
previous lemma.

Example 13. If x0 ∈ (0, 1)Z andx0
0 ∈ [ 1

2(1−k), 1
2(1+k)], then|x2

0 − 1
2| ≤ k2|x0

0 − 1
2|, and the sequence(x2t

0 )t∈N
converges to12.

If connected paths are considered in the spatio–temporal diagram, the convergence rate isk.

Example 14. If x0 ∈ (0, 1)Z andx0
0 ∈ [ 1

2(1 − k), 1
2(1 + k)], then|x1

±1 − 1
2| ≤ k|x0

0 − 1
2|, and any connected path

(x
j

i(j))j∈N such thati(0) = 0 and∀j ∈ N, i(j + 1) = i(j) ± 1, converges to12.

Finally, using Lemma 12 again, we generalize Corollary 8: any path in the spatio–temporal diagram can be
considered, and still lead to the same conclusion.

Theorem 15. Let x0 ∈ [0, 1]Z be such thatlim inf x0
i > 0 and lim supx0

i < 1, i : N 7→ Z andτ : N 7→ N be two

functions, τ(0) = 0, and limj→∞τ(j) = ∞. Then, the sequence(xτ(j)

i(j) )j∈N converges to12.

Proof. Let us definek = 2 max{|lim inf x0
i − 1

2|, |lim supx0
i − 1

2|}. We have of course 0< k < 1 and,∀i, x0
i ∈

[ 1
2(1−k), 1

2(1+k)]. Thus,|x1
i±1− 1

2| ≤ k|x0
i − 1

2| ≤ k(k/2). The evolution does not depend on positioni anymore;

in fact,∀t, i, |xt
i − 1

2| ≤ 1
2kt+1, whence the result. �

Indeed, the functiong may be rewritten in the form 1− 2g(x, z) = (1 − 2x)(1 − 2z), and this suggests that
a different proof of the convergence to12 may be obtained by a simple variable change. Since we know that
1 − 2g(x, z) = (1 − 2x)(1 − 2z), applyingthis rule (n − 1) times to a finite stringa1a2a3 . . . an, we have

a1a2

(
n − 1

1

)
a3

(
n − 1

2

)
...an−1

(
n − 1
n − 2

)
an.

If all theai ’s are bounded by 1−ε, this is bounded by(1−ε)2n−1
. This clearly goes to 0 exponentially fast, implying

convergence to12 in the original variables.

6. On the observation precision and the Boolean case

In the previous sections we have shown that that fuzzy rule 90 has a very simple behavior: it attracts everything to
1
2. The result leads to the intriguing question: where do the complex patterns in its Boolean evolution come from?
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Table 3
Left: Behavior around1

2 . The rule table is obtained from
Eq. (1):− (resp.+) stands for “smaller (resp. greater) than
1
2”. Right:Rule table of Boolean rule 90.

We know that fuzzy rule 90 attracts everything to1
2. We also know that the values alternate around this point as

they get closer to it: this is due to the minus sign appearing in Eq. (1). The corresponding “rule table” is detailed in
Table 3 (left).

Consider a partition of the interval [0, 1] in a finite number of subintervals, used as coarse-grained approximations
of the real numbers. Such a discretization is necessary for visualizing the space–time diagram of fuzzy rule 90. The
graphical representation will strongly depend on whether1

2 is in the middle or on a border of one of the discretization
subintervals.

If the fixed point1
2 is in the middle of a subinterval, the observation becomes homogeneous after a few steps, as

all the iterations get quickly very close to the fixed point (see Fig. 1, left). On the contrary, if the fixed point is on
the border of some subinterval, the values will alternate around the two subintervals bordering on the fixed point
according to the rule of Table 3 (left). Thus, the visualization will show the alternation between intervals (i.e., using
different grey levels, depending upon whether they are smaller or greater than1

2) creating the seemingly “chaotic”
triangular patterns found in the Boolean evolution (see Fig. 1, right); this is exactly what happens in the binary case,
when the interval [0, 1] is divided into two subintervals. In other words, if the fixed point is on the border of some

Fig. 1. Evolution of fuzzy rule 90. Grey levels indicate different value ranges. Time evolves from top to bottom.Left: 127 discretization intervals
have been used and the fixed point1

2 is in the middle of the central interval.Right: 128 discretization intervals have been used and the fixed
point 1

2 is on the border of one of the central intervals.
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Fig. 2. Evolution of Boolean rule 90 from a random initial configuration. The black pixels correspond to the value 0, the white pixels correspond
to 1.

subinterval, the visualization displays a consequence of the discretization process and misleads the observernot
showingthe inherent convergence to12 which is the basic behavior of fuzzy rule 90.

This leads to an observation on the observation precision. In fact, as we have seen, the same dynamics can be
observed as very simple or totally complex, depending upon whether the attracting fixed point falls in the interior or
on the border of some discretization interval. In other words, the observed behavior is an artifact of the visualization
tools used. This very important phenomenon is not a specific feature of fuzzy rule 90; actually, when looking at
the behavior of any continuous system by simulation, the descriptive precision used is of utmost importance on the
observed complexity and it deserves a deep investigation. This indicates the limits and the dangers of visualization
tools and of experimental analysis.

Another very important observation concerns the question we posed at the beginning of this section: Where the
“complex” patterns oflinear Boolean rule 90 come from? In the fuzzy case, we have seen that, if1

2 is the extremum
of one of the discretization subintervals, the display shows, after a short transient, theexact same behaviorof
Boolean rule 90 (see Fig. 2). This surprising and remarkable observation is actually explained by the fact that the
table of Boolean rule 90 (see Table 3, right) isexactly the sameas the one describing the alternation around the
fixed-point of fuzzy rule 90 (see Table 3, left), where− (resp.+) is replaced by 0 (resp. 1). This provides the first
explanation of the “complex” nature of the evolution of the Boolean rule: the well-known observed dynamics of
Boolean rule 90 (see Fig. 2) describes the behavior of fuzzy rule 90 around its fixed point.

7. Concluding remarks

An interesting open direction is to find general techniques for analyzing the fuzzy rules’ behaviors and to apply
them to classes of rules instead of having to perform case-by-case analysis.

Some transformations and operations on the rules (which preserve qualitative and/or quantitative dynamic prop-
erties) could be used to extend the class of rules to which our method applies. In fact, building homomorphisms
between known and new systems, composing known rules to obtain new ones, and combining individual properties
to get homomorphically global ones, the methods described in this paper can be applied, with minor modifications,
to the fuzzy rules 60, 102, 153, 165, and 195 where we find the same convergence properties.
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