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Abstract

The gathering (or multi-agent rendezvous) problem requires a set of mobile agents, arbitrarily
positioned at different nodes of a network to group within finite time at the same location, not
fixed in advanced.

The extensive existing literature on this problem shares the same fundamental assumption:
the topological structure does not change during the rendezvous or the gathering; this is true
also for those investigations that consider faulty nodes. In other words, they only consider static
graphs.

In this paper we start the investigation of gathering in dynamic graphs, that is networks
where the topology changes continuously and at unpredictable locations.

We study the feasibility of gathering mobile agents, identical and without explicit communi-
cation capabilities, in a dynamic ring of anonymous nodes; the class of dynamics we consider is
the classic I-interval-connectivity. We focus on the impact that factors such as chirality (i.e., a
common sense of orientation) and cross detection (i.e., the ability to detect, when traversing an
edge, whether some agent is traversing it in the other direction), have on the solvability of the
problem; and we establish several results.

We provide a complete characterization of the classes of initial configurations from which the
gathering problem is solvable in presence and in absence of cross detection and of chirality. The
feasibility results of the characterization are all constructive: we provide distributed algorithms
that allow the agents to gather within low polynomial time. In particular, the protocols for
gathering with cross detection are time optimal.

We also show that cross detection is a powerful computational element. We prove that,
without chirality, knowledge of the ring size is strictly more powerful than knowledge of the
number of agents; on the other hand, with chirality, knowledge of n can be substituted by
knowledge of k, yielding the same classes of feasible initial configurations.

From our investigation it follows that, for the gathering problem, the computational obstacles
created by the dynamic nature of the ring can be overcome by the presence of chirality or of
cross-detection.
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1 Introduction

1.1 Background and Problem

The gathering problem requires a set of k mobile computational entities, dispersed at different
locations in the spacial universe they inhabit, to group within finite time at the same location,
not fixed in advanced. This problem, known also as multi-agent rendezvous, has been intesively
and extensively studied in a variety of fields, including operations research (e.g., [1]) and control
(e.g., [41]), the original focus being on the rendezvous problem, i.e. the special case k = 2.

In distributed computing, this problem has been extensively studied both in continuous and in
discrete domains. In continuous domains, both gathering and rendevous have been investigated in
the context of swarms of autonomous mobile robots operating in one- and two-dimensional spaces,
requiring them to meet at (or converge to) the same point (e.g., see [11,[12,/17,27,[2843]). In discrete
domains, the mobile entities, usually called agents, are dispersed in a network modeled as a graph
and are required to gather at the same node (or at the two sides of the same edge) and terminate
(e.g., see [2|18]19,24,2532,35-37.146,|47]). The main obstacle for solving the problem is symmetry,
which can occur at several levels (topological structure, nodes, agents, communication), each playing
a key role in the difficulty of the problem and of its resolution. For example, when the nodes are
uniquely numbered, solving gathering is trivial. On the other hand, when the nodes are anonymous,
the network is highly symmetric, the agents are identical, and there is no means of communication,
the problem is clearly impossible to solve by deterministic means. The quest has been for minimal
empowering assumptions which would make the problems deterministically solvable. A very common
assumption is for the agents to have distinct identities; this enables different agents to execute
different deterministic algorithms (e.g., see [13/18,/19,47]). An alternative type of assumption
consists in empowering the agents with some minimal form of explicit communication. In one
approach, this is achieved by having a whiteboard at each node giving the agents the ability to
leave notes in each node they travel (e.g., [2,9,24]). A less explicit and more primitive form of
communication is by endowing each agent with a constant number of movable tokens, i.e. pebbles
that can be placed on nodes, picked up, and carried while moving (e.g., [14]). An assumption
much less demanding than agents having identities or explicit communication is that of having the
homebases (i.e., the nodes where the agents are initially located) identifiable by an identical mark
visible to any agent passing by it; originally suggested in [3], it has been used and studied e.g.,
in [25,[37,45]. Summarizing, the existing literature on gathering and rendezvous is extensive and
the variety of assumptions and results is aboundant (for surveys see [36,/44]). Regardless of their
differences, all these investigations, including those that consider faulty nodes (e.g., see [6,924]),
share the same fundamental assumption that the topological structure does not change during the
rendezvous or the gathering. In other words, they only consider static graphs.

Recently, within distributed computing, researchers started to investigate dynamic graphs, that is
graphs where the topological changes are not localized and sporadic; rather, they occur continuously
and at unpredictable locations, and are integral part of the nature of the system [8,/40]. The study of
distributed computations in dynamic graphs has concentrated on problems of information diffusion,
agreement, and exploration (e.g., [4,5,(7,29-31}38,39]).

In this paper we start the investigation of gathering in dynamic graphs by studying the feasibility
of this problem in dynamic rings. Note that rendezvous and gathering in a ring, the prototypical
symmetric graph, have been intesively studied in the static case (e.g., see the monograph on the
subject [36]). The presence, in the static case, of a mobile faulty agent that can block other agents,
considered in |15,[16], could be seen as inducing a particular form of dynamics. Other than that,
nothing is known on gathering in dynamic rings.



1.2 Main Contributions

We study gathering of k agents, identical and without communication capabilities, in a dynamic
ring of n anonymous nodes with identically marked homebases. The class of dynamics we consider
is the classic 1-interval-connectivity (e.g., [22,29,31},38,39]); that is, the system is fully synchronous
and under a (possibly unfair) adversarial schedule that, at each round, chooses which edge (if any)
will be missing. In this setting, we investigate under what conditions the gathering problem is
solvable. In particular, we focus on the impact that factors such as chirality (i.e., common sense of
orientation) and cross detection (i.e., the ability to detect, when traversing an edge, whether some
agent is traversing it in the other direction), have on the solvability of the problem. Since, as we
prove, gathering at a single node cannot be guaranteed in a dynamic ring, we allow gathering to
occur either at the same node, or at the two end nodes of the same link.

A main result of our investigation is the complete characterization of the classes F(X,Y)
of initial configurations from which the gathering problem is solvable with respect to chirality
(X € {chirality, —chirality}) and cross detection (Y € {detection,—~detection}). In ob-
taining this characterization, we establish several interesting results. For example, we show that,
without chirality, cross detection is a powerful computational element; in fact, we prove (The-
orems [1] and [f)): F(—chirality, ~detection) C F(—chirality,detection). Furthermore, in
such systems knowledge of the ring size n cannot be substituted by knowledge of the number
of agents k (at least one of n and k£ must be known for gathering to be possible); in fact, we
prove that, with cross detection but without chirality, knowledge of n is strictly more powerful
than knowledge of k. On the other hand, we show that, with chirality, knowledge of n can be
substituted by knowledge of k, yielding the same classes of feasible initial configurations. Fur-
thermore, with chirality, cross detection is no longer a computational separator; in fact (The-
orems (3| and [4]) F(chirality, -detection) = F(chirality,detection) We also observe that
Fstatic = F(chirality,x) = F(—chirality,detection) where Fgyq1c denotes the set of initial
configurations from which gathering is possible in the static case. In other words: with chirality
or with cross detection, it is possible to overcome the computational obstacles created by the highly
dynamic nature of the system. All the feasibility results of this characterization are constructive:
for each situation, we provide a distributed algorithm that allows the agents to gather within low
polynomial time. In particular, the protocols for gathering with cross detection, terminating in O(n)
time, are time optimal. Moreover, our algorithms are effective; that is, starting from any arbitrary
configuration C' in a ring with conditions X and Y, within finite time the agents determine whether
or not C € F(X,Y) is feasible, and gather if it is.

Due to space limitations, the proofs are omitted; for the full text see the Appendix or [23].

2 Model and Basic Limitations

2.1 Model and Terminology

Let R = (vg, . ..vn—1) be a synchronous dynamic ring where, at any round ¢ € N, one of its edges
might not be present; the choice of which edge is missing (if any) is controlled by an adversarial
scheduler, not restricted by fairness assumptions. Such a dynamic network is known in the literature
as a I-interval connected ring (e.g., [23,31]). Each node v; is connected to its two neighbours v;_;
and v;41 via distinctly labeled ports ¢;— and g;+, respectively (all operations on the indices are
modulo n); the labels of the ports are arbitrary elements of a totally ordered set, and thus might not
provide a globally consistent orientation. Each port of v; has an incoming buffer and an outgoing
buffer. Finally, the nodes are anonymous (i.e., have no distinguished identifiers). Operating in R is



a set A = {ap,...,ar_1} of computational entities, called agents, each provided with memory and
computational capabilities. The agents are anonymous (i.e., without distinguishing identifiers) and
all execute the same protocol. When in a node v, an agent can be at v or in one of the port buffers.
Any number of agents can be in a node at the same time; an agent can determine how many other
agents are in its location and where (in incoming buffer, in outgoing buffer, at the node). Initially
the agents are located at distinct locations, called homebases; homebases are marked so that an
agent can determine whether or not the current node is a homebase. Note that, as discussed later,
this assumption is necessary in our setting. Each agent has its own left/right orientation of the ring,
but the orientations of the agents might not be the same. If all agents agree on the orientation,
we say that there is chirality. The agents are silent: they not have any explicit communication
mechanism. They are mobile; that is, they can move from node to neighboring node. More than
one agent may move on the same edge in the same direction in the same round. We say that the
system has cross detection if whenever two or more agents move in opposite directions on the same
edge in the same round, the involved agents detect this event; however they do not necessarily know
the number of the involved agents in either direction. In each round, every agent is in one of a
finite set of system states S which includes two special states: the initial state Init and the terminal
state Term. At the beginning of a round 7, an agent in v executes its protocol (the same for all
agents). Based on the number of agents at v and in its buffers, and on the content of its local
memory and its state, the agent determines whether or not to move and, if so, in which direction
(direction € {left,right,nil}). If direction = nil, the agent places itself at v (if currently on a
port). If direction # nil, the agent moves in the outgoing buffer of the corresponding port (if not
already there); if the link is present, it arrives in the incoming buffer of the destination node in
round r + 1; otherwise it does not leave the outgoing buffer. As a consequence, an agent can be in an
outgoing buffer at the beginning of a round only when the corresponding link was not present in the
previous round. In the following, when an agents is in an outgoing buffer that leads to the missing
edge, we will say that the agent is blocked. When multiple agents are at the same node, all of them
have the same direction of movement, and are in the same state, we say that they form a group. Let
(R, A) denote a system so defined. In (R,.A), gathering is achieved in round r if all agents in A
are on the same node or on two neighbouring nodes in r; in the first case, gathering is said to be
strict. An algorithm solves GATHERING if, starting from any configuration from which gathering is
possible, within finite time all agents are in the terminal state, are gathered, and are aware that
gathering has been achieved. A solution algorithm is effective if starting from any configuration
from which gathering is not possible, within finite time all agents detect such impossibility.

2.2 Configurations and Elections

The locations of the k home bases in the ring is called a configuration. Let C be the set of all
possible configurations with k agents. Let hg,...,hir_1 denote the nodes corresponding to the
marked homebases (in a clockwise order) in C € C. We shall indicate by d; (0 < i < k—1)
the distance (i.e., number of edges) between h; and h;y1 (all operations are modulo k). Let 677
denote the inter-distance sequence clockwise 677 =< dj,djy1 ...dj4p—1 >, and let 077 denote
the couter-clockwise sequence 67 =< dj—1 ... dj_(x—1) >. The unordered pair of inter-distance
sequences 77/ and §77 describes the configuration from the point of view of node h;j. A configuration
is periodic with period p (with pl|k) if §; = 0;4, for alli =0,...k—1. Let P denote the set of periodic
configurations. Let At = {6%/:0<j<k—1}and A~ ={§7:0<j <k —1}. We will denote
by dmin the ascending lexicographically minimum sequence in AT U A~. Among the non-periodic
configurations, particular ones are the double-palindrome configurations, where &,,;, = 6% = 677
with i # j, where it is easy to see that the two sequences between the corresponding home bases h;



and h; are both palindrome. A double-palindrome configuration has thus a unique axis of symmetry,
equidistant from h; and h;. If such an axis passes through two edges (i.e., the distances between h;
and h; are both odd), we say that the configuration is edge-edge, and we denote by £ the set of
edge-edge configurations.

A characterization of the configurations where a leader can be elected depending on chirality is
well known in static rings.

Property 1. In a static ring without chirality, a leader node can be elected from configuration C' if
and only if C € C\ (PUE); a leader edge can be elected if and only if C € C\ P.
With chirality, a leader node can be elected if and only if C € C\ P.

2.3 Basic Limitations and Properties

The simple properties below motivate the necessity of the following assumptions: identical but
distinguishable homebases, knowledge of either n or k, gathering on a node or on an edge.

Property 2. If the homebases are not distinguishable, then GATHERING is unsolvable in (R, A);
this holds regardless of chirality, cross detection, and knowledge of k and n.

Property 3. In (R, A), if neither n nor k are known, then GATHERING is unsolvable; this holds
regardless of chirality and cross detection.

Property 4. In (R,.A), strict GATHERING is unsolvable; this holds regardless of chirality, cross
detection, and knowledge of k and n.

Finally, the following obvious but important limitation holds even in static situations.

Property 5. GATHERING is unsolvable if the initial configuration C € P; this holds regardless of
chirality, cross detection, and knowledge of k and n.

3 General Solution Structure

Our algorithms have the same general structure, and use the same building block and variables.

General Structure. All our algorithms are divided in two phases. The goal of Phase 1 is for the
agents to explore the ring. In doing so, they may happen to solve GATHERING as well. If they
complete Phase 1 without gathering, the agents are able to elect a node or an edge (depending on
the specific situation) and the algorithm proceeds to Phase 2. In Phase 2 the agents try to gather
around the elected node (or edge); however, gathering on that node (or edge) might not be possible
due to the fact that the ring is dynamic. Different strategies are devised, depending on the setting,
to guarantee that in finite time the problem is solved in spite of the choice of schedule of missing
links decided by the adversary. For each setting, we will describe the two phases depending on the
availability or lack of cross detection, as well as on the presence or not of chirality. Intuitively, cross
detection is useful to simplify termination in Phase 2, chirality helps in breaking symmetries.
Exploration Building Block. At each round, an agent evaluates a set of predicates: depending
on the result of this evaluation, it chooses a direction of movement and possibly a new state. In its
most general form, the evaluation of the predicates occurs through the building block procedure
EXPLORE (dir | p1 : s1; p2: S2; ... Dh : Sp), where dir is either left or right, p; is a predicate, and
s; is a state. In Procedure EXPLORE, the agent evaluates the predicates pi,...,pp in order; as soon
as a predicate is satisfied, say p;, the procedure exits and the agent does a transition to the specified
state, say s;. If no predicate is satisfied, the agent tries to move in the specified direction dir and
the procedure is executed again in the next round. Predicates and variables used by procedure
EXPLORE are indicated in Tables 1 and 2. 4



Table 1. Variables | Description

Tims It stores the last round when the agent meets someone (at a node) that is moving in the
same direction (initially set to 0); this value is updated each time a new agent is met,
and it is reset at each change of state or direction of movement.

Btime The number of rounds the executing agent has been blocked trying to traverse a missing
edge since r,s. This variable is reset to 0 each time the agent either traverses an edge or
changes direction to traverse a new edge.

FEtime, Esteps The total number of rounds and edge traversals, respectively. These values are reset at
each new call of procedure EXPLORE or when 7,5 is set.
Agents The number of agents at the node of the executing agent. This value is set at each round.

Table 2. Predicate | Description

meeting Satisfied when the agent (either in a port or at a node) detects an increase in the numbers
of agents it sees at each round.
meetingSameDir Satisfied when the agent detects, in the current round, new agents moving in its same di-

rection. This is done by seeing new agents in an incoming or outgoing buffer corresponding
to a direction that is equal to the current direction of the agent.

meetingOppositeDir | Satisfied when the agent detects, in the current round, new agents moving in its op-
posite direction. This is done by seeing new agents in an incoming or outgoing buffer
corresponding to a direction that is opposite to the current direction of the agent.

crossed Satisfied when the agent, while traversing a link, detects in the current round other
agent(s) moving on the same link in the opposite direction.
seeElected Let us assume there is either an elected node or an elected edge. This predicate is satisfied

when the agent has reached the elected node or an endpoint of the elected edge.

4 Gathering With Cross Detection

In this section, we study gathering in dynamic rings when there is cross detection; that is, an agent
crossing a link can detect whether other agents are crossing it in the opposite direction. Recall
that, by Property |3 at least one of n and k must be known. We first examine the problem without
chirality and show that, with knowledge of n, it is sovable in all configurations that are feasible in
the static case; furthermore, this is done in optimal time ©(n). On the other hand, with knowledge
of k alone, the problem is unsolvable. We then examine the problem with chirality, and show that
in this case the problem is sovable in all configurations that are feasible in the static case even with
knowledge of k alone; furthermore, this is done in optimal time ©(n).

4.1 With Cross Detection: Without Chirality

In this section, we present and analyze the algorithm, GATHER (CROSS,ZHIR), that solves GATHERING
in rings of known size with cross setection but without chirality.

Algorithm GATHER(CROSS,ZHIR): Phase 1. The overall idea of this phase, shown in Figure
is to let the agents move long enough along the ring to guarantee that, if they do not gather, they
all manage to fully traverse the ring in spite of the link removals. More precisely, for the first 6n
rounds each agent attempts to move to the left (according to its orientation). At round 6n, the
agent checks if the predicate Pred = (rps < 3n A Esteps < n) is verified. If Pred is not verified,
then (as we show) the agent has explored the entire ring and thus knows the total number k of
agents (local variable T'otal Agents); in this case, the agent switches direction, and enters state
SwitchDir. Otherwise, if after 6n rounds Pred is satisfied, then k is not known yet: in this case, the
agent keeps the same direction, and enters state KeepDir. In state SwitchDir, the agent attempts to
move in the chosen direction until round 12n. At round 12n, the agent terminates if the predicate
[Fms < 9n A Esteps < n| holds, predicate meetingOppositeDir does not hold, and in its current
node there are k agents; otherwise, it starts Phase 2. In state KeepDir, if at round 6n + 1 predicate




crossed or predicate meetingOppositeDir hold, the agent terminates; otherwise, it attempts to move
to its left until round 12n. At round 12n, if the predicate [r;,s < 9n A Esteps < n] holds, the agent
terminates; otherwise, it switches to Phase 2.

States: {Init, SwitchDir, KeepDir, Term}.
In state Init:

EXPLORE (left | Ttime = 6n A —Pred: SwitchDir; Ttime = 6n A Pred: KeepDir)
In state SwitchDir:

EXPLORE(right | Ttime = 12n Arpms < 9n A Esteps <n A Agents = Total Agents A —meetingOppositeDir: Term;
Ttime = 12n: Phase 2)
In state KeepDir:

EXPLORE (left | crossed V meetingOppositeDir: Term; Ttime = 12n A rms < 9n A Esteps < n: Term; Ttime = 12n:
Phase 2)

Figure 1: Phase 1 of Algorithm GATHER(CROSS,ZHIR)

We now prove some important properties of Phase 1.

Lemma 1. Let agent a* mowe less than n steps in the first 3n rounds. Then, by round 3n, all
agents moving in the same direction as a* belong to the same group.

Because of absence of chirality, the set A of agents can be partitioned into two sets where all
the agents in the same set share the same orientation of the ring; let A, and A; be the two sets.

Lemma 2. Let A € {A,, A;}. If at round 6n Pred is verified for an agent a* € A, then all agents
in A are in the same group at round 6n. Moreover, Pred is verified for all agents in A.

Lemma 3. Let A € {A,, A;}. If Pred is not verified at round 6n for agent a* € A, then at round
6n all agents in A have done a complete tour of the ring (and hence know the number of total agents,
k); moreover, Pred is not verified for all agents in A.

Lemma 4. If one agent terminates in Phase 1, then all agents terminate and gathering has been
achieved. Otherwise, no agent terminates and all of them have done a complete tour of the ring.

Algorithm GATHER(CROSS,HIR): Phase 2. When the agents execute Phase 2, by Lemma
they know the initial configuration C. If C' € P, gathering is impossible (Property |5) and they
become aware of this fact. Otherwise, if C' € £ they can elect an edge ey, and if C € C\ (P UE)
they can elect one of the homebases vy, (Property . For simplicity of exposition and w.l.g., in
the following we assume that Phase 2 of the algorithm starts at round 0. In Phase 2, an agent
first resets all its local variables, with the exception of Total Agents, that stores the number of
agents k; between rounds 0 and 3n, each agent moves toward the elected edge/node following the
shortest path (shortestPathDirectionElected()). If at round 3n an agent has reached the elected node
or an endpoint of the elected edge it stops, and enters the ReachedElected state. Otherwise (i.e., at
round 3n, the agent is not in state ReachedElected), it switches to the ReachingElected state. If all
agents are in the same state (either ReachedElected or ReachingElected), then they are in the same
group, and terminate (Agents = Total Agents). If they do not terminate, all agents start moving:
each ReachingElected agent in the same direction it chose at the beginning of Phase 2, while the
ReachedElected agents reverse direction. From this moment, each agent, regardless of its state,
terminates as soon as it perceives k agents in the same node or if it is blocked on a missing edge for
2n rounds. In other situations, the behaviour of agent a* depends on its state, as described below.
State ReachedElected. If a* crosses a group of agents, it enters the Joining state. In this new state,
say at node v, the agent switches direction in the attempt to catch and join the agent(s) it just
crossed. If a* leaves v without crossing any agent (Esteps = 1), a* enters again the ReachedElected




state, switching again direction (i.e., it goes back to direction originally chosen when Phase 2 started).
If instead a* leaves v and it crosses some agents, it terminates: this can happen because also the
agents that a* crossed try to catch it (and all other agents in the same group with a*). As we will
show, in this case all agents can correctly terminate.

State ReachingElected. If a* is able to reach the elected node/edge (seeElected is verified), it enters
the ReachedElected state, and switches direction. If a* is blocked on a missing edge and it is reached
by other agents, then it switches state to ReachedElected keeping its direction (meetingSameDir is
verified). Finally, if a* crosses someone, it enters the Waiting state, and it stops moving. If while in
the Waiting state a* meets someone new before 2n rounds, it enters the ReachedElected state, and
switches direction. Otherwise, at round 2n it terminates.

States: {Phase 2, ReachedElected, ReachingElected, Joining, Waiting, ReverseDir,Term}.
In state Phase 2:
if C € P then
unsolvable()
Go to State Term
resetAllVariables except Total Agents
dir =shortestPathDirectionElected()
EXPLORE (dir | seeElected: ReachedElected; T'time = 3n: ReachingElected)
In state ReachedElected:
dir =opposite(dir)
if Ttime > 3n then
EXPLORE (dir | Agents = Total Agents V Btime = 2n: Term; crossed: Joining)

In state Joining:

dir =opposite(dir)

EXPLORE (dir | Agents = Total Agents V Btime = 2n V crossed: Term; Esteps = 1: ReverseDir)
In state ReachingElected:

EXPLORE (dir | Agents = TotalAgents V Btime = 2n: Term; meetingSameDir: ReachedElected;
meetingOppositeDir V seeElected: ReverseDir; crossed: Waiting)
In state Waiting:

EXPLORE (nil | Etime > 2n: Term; meeting: ReverseDir)
In state ReverseDir:

dir =opposite(dir)

Go to State ReachedElected

Figure 2: Phase 2 of Algorithm GATHER(CROSS,HIR)
Lemma 5. At round 3n of Phase 2, there is at most one group of agents in state ReachingElected,
and at most two groups of agents in state ReachedElected.

Lemma 6. If an agent a* terminates executing Phase 2, then all other agents will terminate, and
gathering is correctly achieved.

Lemma 7. Phase 2 terminates in at most 10n rounds.

Theorem 1. Without chirality, GATHERING is solvable in rings of known size with cross detection,
starting from any C € C\ P. This can be done in O(n) rounds fby an effective algorithm.

4.2 Knowledge of n is more Powerful Than Knowledge of £

One may ask if it is possible to obtain the same result of Theorem [l if knowledge of k& was available
instead of n; recall that at least one of n and k£ must be known (Property . Unfortunately, the
following Theorem shows that, from a computational point of view, knowledge of the ring size is
strictly more powerful than knowledge of the number of agents.

Theorem 2. In rings with no chirality, GATHERING ts tmpossible without knowledge of n when
starting from a configuration C € €. This holds even if there is cross detection and k is known.



4.3 With Cross Detection: With Chirality

Let us now consider the simplest setting, where the agents have cross detection capability as
well as a common chirality. If n is known, the problem is already optimally solved by Algorithm
GATHER(CROSS,HIR). So, we need only to consider the case when k is known but n is not.

Phase 1 of the solution, Algorithm GATHER(CROSS, CHIR), consists of the following modification
of Phase 1 of Algorithm GATHER(CROSS,ZHIR), to work with knowledge of k. Each agent moves
counterclockwise terminating if the k agents are all at the same node. As soon as it passes by k + 1
homebases, it discovers n. At this point, it continues to attempt to move in the same direction
switching to Phase 2 at round 3n+ 1 (unless gathering occurs before). After 3n rounds, if the agents
have not terminated, they have however certainly performed a loop of the ring, know n (having
seen k + 1 home bases) and they start Phase 2. Since n is known, the agents can use as Phase 2 the
one of Algorithm GATHER(CROSS,ZHIR), which is time optimal. We then have:

Theorem 3. With chirality, cross detection and knowledge of either n or k, GATHERING is solvable
in at most O(n) rounds from any configuration C € C \ P with an effective algorithm..

5 Without Cross Detection

In this section we study the gathering problem when there is no cross detection. We focus first on
the case when the absence of cross detection is mitigated by the presence of chirality. We show
that gathering is possible in the same class of configurations as with cross detection, albeit with
a O(nlogn) time complexity. We then examine the most difficult case of absence of both cross
detection and chirality. We prove that in this case the class of feasible configurations is smaller (i.e.,
cross detection is a computational separator). We show that gathering can be performed from all
feasible configuration in O(n?) time.

5.1 Without Cross Detection: With Chirality

The structure of the algorithm, GATHER (ZROSS,CHIR), still follows the two Phases. Since Phase
1 of Algorithm GATHER(CROSS,CHIR) does not use cross detection, it can be used as Phase 1 of
GATHER (ZROSS,CHIR).

Let thus focus on Phase 2. Because of chirality, a leader node can be always elected, even when
the initial configuration is in £ (Property [1). We will show how to use this fact to modify Phase 2
of Algorithm GATHER(CROSS,CHIR) to work without assuming cross detection. We will do so by
designing a mechanism that will force the agents never to cross each other. The main consequence
of this fact is that, whenever two agents (or two groups of agents) would like to traverse the same
edge in opposite direction, only one of the two will be allowed to move thus “merging” with the
other. This mechanism is described below.

Basic no-crossing mechanism. To avoid crossings, each agent constructs an edge labeled
bidirectional directed ring with n nodes (called Logic Ring) and it moves on the actual ring
according to the algorithm, but also to specific conditions dictated by the labels of the Logic Ring.
In the Logic Ring, each edge of the actual ring is replaced by two labeled oriented edges in the
two directions. The label of each oriented edge e¢;, 0 < ¢ < n — 1, is either X; or Y; , where
X,; and Y; are infinite sets of integers. Labels Xg...X,,_1 are assigned to consecutive edges in
counter-clockwise direction starting from the leader node, while Yy ...Y,,_; are assigned in clockwise
direction. Intuitively, we want to construct these sets of labels in such a way that X; and Y; have an
empty intersection, and allow an agent to traverse an edge at round r only if r is contained in the
set of labels associated to the corresponding oriented edge of the Logic Ring. For this construction



we define X; = {s+m-(2p+2) | (s € S; Vs =2p),Vm € N}, where p = [logy n], and S; is a subset
of {0,1,...,2p — 1} of size exactly p (note that there are (2;’) > n possible choices for S;). Indeed,

there are 2° = 218271 > 5 ways to choose which elements of {0,1,...,p — 1} are in S;; each of
these choices can be completed to a set of size p by choosing the remaining elements from the set
{p,p+1,...,2p — 1}. Therefore there are at least n available labels, and we can define the X;’s so
that they are all distinct. Then we define Y; to be the complement of X; for every i. The following
property is immediate by construction:

Observation 1. Let m € N and let I = {m,m +1,...,m+ 2p+ 1}. Then, X; and Y; have a
non-empty intersection in I if and only if i # j, X; and X; have a non-empty intersection in I,
and Y; and Y; have a non-empty intersection in I.

From the previous observation, it follows that two agents moving following the Logic Ring in
opposite directions will never cross each other on an edge of the actual ring. As a consequence
of this fact, we can derive a bound on the number of rounds that guarantee two groups of robots
moving in opposite direction, to “merge”. In the following lemma, we consider the execution of the
algorithm proceeding in periods, where each period is composed by 2p + 2 rounds. We have:

Lemma 8. Let us consider two groups of agents, G and G', moving in opposite directions following
the Logic Ring. After at most n periods, that is at most O(nlogn) rounds, the groups will be at a
distance d <1 (in the direction of their movements).

States: {ReachedElected, ReachingElected, ChangeDir, ChangeState, DirCommR, DirCommS, Term}.
In state Phase 2:
if ¢ € P then
unsolvable()
Go to State Term
resetAllVariables except Total Agents
dir = leaderMinimumPath()
EXPLORE (dir | seeElected: ReachedElected; T'time = 3n: ReachingElected)
In state ReachedElected:
if Ttime > 3n then
dir = clockwiseDirection()
EXPLORE (dir | (BPeriods > 4n+ 8 V Agents = Total Agents): Term;)
In state ReachingElected:
if Ttime = 3n then
dir = counterclockwiseDirection()

EXPLORE (dir | (BPeriods > 4n + 8 V Agents = Total Agents): Term;)

Figure 3: Phase 2 of Algorithm GATHER({ZROSS,CHIR)

We are now ready to describe the actual Phase 2. In the following, when the agents are
moving following the meta-rule in the Logic Ring, we will use variable B Periods, instead of Btime,
indicating the number of consecutive periods in which the agent failed to traverse the current edge.
As in the case of Btime, the new variable BPeriods is reset each time the agent traverses the edge,
changes direction, or encounters new agents in its moving direction. In the first 3n rounds, each
agent moves towards the elected node using the minimum distance path. After round 3n, the group
in state ReachedElected starts moving in clockwise direction, the group in state ReachingElected in
counterclockwise. One of the two groups terminates if BPeriods > n rounds or if Agents = k. This
replaces the terminating condition Btime = 2n that was used in case of Cross detection. Phase 2 of
the Algorithm is shown in Figure

Lemma 9. Phase 2 of Algorithm GATHER(ZROSS,CHIR) terminates in at most O(nlogn) rounds,
solving the GATHERING problem.



Theorem 4. With chirality and knowledge of n or k, GATHERING is solvable from any configuration
C € C\P. This can be done in O(nlogn) rounds with an effective algorithm.

5.2 Without Cross Detection: Without Chirality

In this section, we consider the most difficult setting when neither cross detection nor chirality are
available. We show that in this case GATHERING is impossible if C € £. On the other hand, we
provide a solution for rings of known size from any initial configuration C' € C \ (P U &), which
works in O(n?) rounds. We start this Section with the impossibility result.

Theorem 5. Without chirality and without cross detection, GATHERING is impossible when starting
from a configuration C € E. This holds even if the agents know C (hence n and k).

Algorithm GATHER(ZROSS,HIR): Phase 1. The lack of cross detection is not a problem when
there is a common chirality. However, the combination of lack of both cross detection and chirality
significantly complicates Phase 1, and new mechanisms have to be devised to insure that all agents
finish the ring exploration and correctly switch to Phase 2. In the following we will denote by
Btime' the value of Btime at the previous round, that is at round Ttime — 1.

Each agent attempts to move along the ring in its own left direction. An agent terminates in
the Init state if it has been blocked long enough (Btime > 2n + 2), or if it was blocked for an
appropriate amount of time and is now meeting a new agent (Btime' > n+ 1A meeting). If an agent
does not terminate by round (3n)(n + 3) it enters a sync sub-phase, whose purpose is to perform
a synchronization to ensure that, if a group of agents terminates in the Init state by condition
(Btime > 2n + 2), all the remaining active agents will also terminate correctly.

States: {Init, SyncR, SyncL, Term}.
In state Init:
EXPLORE (left | Ttime > (3n)(n + 3): SyncL; Btime > (2n + 2) V (Btime’ > n + 1 A meeting): Term)
In state SyncL:
EXPLORE (left | (Ttime > (3n)(n+3) +2n+ 1A Btime > n) V Agents = Total Agents: Term; Ttime > (3n)(n+3) +
2n + 1: Phase 2; 0 < Btime < n: SyncR)
In state SyncR:
EXPLORE (right | Agents = Total Agents: Term; Ttime > (3n)(n + 3) + 2n + 1: Phase 2; Btime = 1: Syncl)

Figure 4: Phase 1 of Algorithm GATHER({ROSS,ZHIR)

Lemma 10. If an agent does not terminate at the end of Phase 1, then no agent terminates and
all of them have done at least one complete loop of the ring. If an agent terminates during Phase 1,
then all agents terminate and GATHERING is correctly solved.

Algorithm GATHER(ZROsS,HIR): Phase 2. By Lemma at the end of Phase 1 each agent
knows the current configuration. Since we know that the problem is not solvable for initial
configurations C € £ (Theorem []), the initial configuration must be non-symmetric (i.e., without
any axis of symmetry) or symmetric but with the unique axis of symmetry going through a node.
In both cases, the agents can agree on a common chirality. In fact, if C does not have any symmetry
axes, the agents can agree, for example, on the direction of the lexicographically smallest sequence
of homebases inter distances. If instead there is an axis of symmetry going through a node vy, they
can agree on the direction of the port of vy with the smallest label. We can then use as Phase 2,
the one of Algorithm GATHER(ZROSS,CHIR) presented in Section

Theorem 6. Without chirality, GATHERING is solvable in rings of known size without cross detection
from all C € C\ (PUE). This can be done in O(n?) rounds by an effective algorithm.
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